

Inelastic Background study Q²=8.54GeV² --GEP-3 collaboration

Wei Luo Lanzhou University

Outline

- Introduction
- π° events identification at BigCal
- Focal plane Inelastic background correction at Q²=8.54GeV²
- Focal plane asymmetry when ID π° events at BigCal
- Conclusion

What's in the background?

With the coincidence trigger of BigCal and HMS, we eliminated most of the other reaction. Reactions may pass our trigger are photon production reactions, like

$$\vec{\gamma} + p \rightarrow \pi^0 + \vec{p} \\ \mapsto \gamma + \gamma$$

Most of events will NOT pass the HMS ~ BigCal correlation cut

Cross section much smaller than the π° production Will pass all the correlation cuts

Simulation and data comparison Q²=8.54GeV²

Simulation of π° decay on BigCal (assuming π° energy is the same as elastic electron)

Data of two clusters found on BigCal (Threshold was set high and rejected most of large E_{diff} events)

π° events identification at BigCal

 π° mass reconstruction:

$$m_{\pi^o} = \sqrt{2E_1E_2(1 - \cos(\theta_{12}))}$$

The gain and energy resolution of BigCal calculated by π° are almost the same as using elastic electron.

Within the BigCal acceptance we can identify two photons decayed from π° only at $Q^{2}=8.54$ GeV² and $Q^{2}=2.5$ GeV²(lowest ϵ)

Asymmetry at FPP

 $f^{\pm}(\theta, \varphi)$ is the azimuthally distribution with two beam helicity state;

$$f(\theta,\varphi) = \frac{N^{+}(\theta,\varphi) - N^{-}(\theta,\varphi)}{N^{+}(\theta,\varphi) + N^{-}(\theta,\varphi)}$$

Part of elastic events of 8.5GeV² Fit function:

$$f(\varphi) = p_1 \sin(\varphi) + p_2 \cos(\varphi)$$
$$p_1 \propto A_y p_x^{fpp}$$
$$p_2 \propto A_y p_y^{fpp}$$

Inelastic background correction at Q²=8.54GeV²

One of most important data point of GEp3 and also the worst point to identify elastic events. Applied e-p elastic cut(2.5 σ) and plot the $\delta \sim \theta_{HMS}$ correlation cut.

Blackall the eventsBlueinelastic eventsRedelastic events

Separate background and elastic events into groups and fit the asymmetry at FPP. Plots of fitting parameter P1 and P2

Inelastic background correction at Q²=8.54GeV²

FPP asymmetry when identifying π° events at

BigCal

With BigCal π° cuts, plot the $\delta \sim \theta_{HMS}$ correlation cut.

The π° production has similar trend to background. Need SIMC simulation to confirm the results.

Conclusion

- The asymmetry of inelastic background is different to the elastic events.
- The correction of inelastic contribution under elastic peak is important.
- Clearly identified π° production reaction has similar asymmetry to the inelastic background.
- Need SIMC simulation to understand the π° production contribution in inelastic background.

Inelastic background correction at Q²=8.54GeV²

- The most import data point of GEp3 and the worst case for elastic events selection.
- Stabilization of cuts:

