High Precision Hypernuclear Spectroscopy in JLab: The HKS Experiment

Lulin Yuan / Hampton University For HKS collaboration Hall C January meeting, Jan. 31, 2009

Hypernuclei: Unique Laboratory To Study Hyperon-Nucleon Interaction

- Hypernuclear Spectroscopy: Probe hyperon-nucleon(YN) effective interaction inside medium
- Understand the role of hyperons in neutron star interior
- Much needed experimental data
 - High resolution hypernuclear spectra beyond p-shell
 - Precise binding energy determination in a wide mass range
 - Produce and study of exotic (highly neutron rich) hypernuclei

HKS Experimental Goals

- JLab HKS experiment: High precision hypernuclear spectroscopy by electroproduction from lower p-shell to medium-heavy mass systems
 - Electroproduction: ${}^{A}Z + e \rightarrow {}^{A}{}_{\Lambda}(Z-1) + e' + K^{+}$
 - Produce ${}^{7}_{\Lambda}$ He, ${}^{12}_{\Lambda}$ B and ${}^{28}_{\Lambda}$ Al
- ~400 keV energy resolution achievable by utilizing high precision electron beam
- Study of high spin, unnatural parity states complementary to hadronic reactions
- High resolution spectroscopy beyond p-shell-- ²⁸ Al
- Possibly resolve spin-doublet splitting
- Neutron rich systems -- $^{7}_{\Lambda}$ He

HKS Experimental Setup

- Data taking at JLab Hall C during summer of 2005
- Experimental setup: Increasing yield and reduce accidental background
 - Accept very forward angle e': using Splitter magnet on target
 - Vertically tilt electron spectrometer

Spectrometer System Calibration

- A precise spectrometer system calibration is a challenging task because of the unique optical features of the HKS spectrometer system:
- On-target splitter field couple e' and K+ arms– only one fixed kinematics setting
- High accidental background in calibration data

HKS spectrometer system

Using known masses of Λ , Σ^0 from CH2 target and identified hypernuclear bound states for spectrometer calibration

Spectrometer System Calibration Strategy

- Kinematics calibration: utilizing well known masses of Λ , Σ^0 produced from CH2. essential to determine binding energy level to a precision ~100 keV
- Spectrometer optics calibration: directly minimize Chisquare w.r.t reconstruction matrix M by an Nonlinear Least Square method

$$\chi^{2} = \sum_{i} w_{i} (m_{i}^{cal} - m_{i}^{exp})^{2} p_{i} = f(X_{fp} / M)$$

• Iteration

Iteration procedure for spectrometer calibration

Kinematics Calibration

• Correct kinematics determined by minimizing Λ and Σ^0 width χ^2

$$\chi^2_{_{CH2-wid}} = 2\sigma^2_{\Lambda} + \sigma^2_{\Sigma}$$

Using position χ^2 as a constraint:

$$\chi^2_{CH2-pos} = 2(m_{\Lambda}^{fit} - m_{\Lambda}^{PDG} - \Delta m_{\Lambda})^2 + (m_{\Sigma}^{fit} - m_{\Sigma}^{PDG} - \Delta m_{\Sigma})^2$$

• Searching minimum χ^2 by a kinematics scan on offsets of beam energy, K and e' central momentum.

Systematic Error From Kinematics Calibration

1. uncertainty of the kinematics point obtained by the calibration: 0.102 MeV/c

$$\sigma_{\chi^2} = 0.006 \rightarrow \sigma_{V_{kin}} = 0.102 \,\mathrm{MeV/c}$$

2. systematic errors of hypernuclear bound states binding energy are the shifts in binding energy resulting from the kinematics uncertainty

Systematic Error from Optical Calibration

- The systematic errors from optical calibration procedure are estimated based on the blind analysis result from simulated data
- The error depends on S/N ratio in missing mass spectrum

Binding energy error from optical calibration vs. S/N ratio in blind analysis

Summary of the Finalized Spectroscopy						
State	$B_{\Lambda}\left(MeV\right)$	Ex (MeV)	Width $\sigma(\text{MeV})$	Sys. Error (Kin.) (keV)	Sys. Error (Opt.) (keV)	Stat. Error (keV)
٨	-0.001	- 20 - 20	0.752	±75	±31	±24
Σ^{0}	$B_{\Sigma} = -0.054$		0.780	±55	±22	±59
${}^{12}{}_{\Lambda}{ m B}~(g.s.)$	-11.559	0.000	0.198	±97	±50	±13
${}^{12}{}_{\text{A}}\text{B} (1 \text{st C.E.})$	-8.758	2.801	0.188	±93	±50	±37
¹² AB (2nd C.E.)	-5.239	6.320	0.241	±91	±50	±67
${}^{12}{}_{\Lambda}B$ (p centroid)	-0.359	11.200	0.218	±90	±50	±20
²⁸ Al (g.s.)	-17.820	0.000	0.179	±125	±50	±27
28 Al (p centroid)	-6.912	10.910	0.202	±101	±50	±33
²⁸ Al (d centroid)	1.360	19.180	0.246	±92	±50	±42
$^{7}_{\Lambda}$ He (g.s.)	-5.727	0.000	0.198	±94	±50	±41
⁹ ⊿Li (g.s.)	-5.634	0.000	0.193*	±94	±50	±184
⁹ Li (lst Ex.)	-4.348	1.296	0.192*	±93	±50	±147
⁹ ∧Li (2nd Èx.)	-3.94	1.694	0.192*	±93	±50	±147
⁹ "Li (3rd Ex.)	-2.670	2.964	0.277*	±91	±50	±123
${}_{A}$ Li (1st Ex.) ${}^{9}_{A}$ Li (2nd Ex.) ${}^{9}_{A}$ Li (3rd Ex.)	-4.548 -3.94 -2.670	1.694 2.964	0.192* 0.277*	±93 ±93 ±91	±50 ±50	• • • •

* The width of these peaks are effected by the statistics and background, but the binding energy values seemed stable within the statistical errors.

HKS Spectra: Energy Resolution And Binding Energy Precision

Current HKS Hypernuclear Spectra Compared With Previous Measurements In Terms of Energy Resolution And Binding Energy Precision

p(e,e'K+) Λ & Σ^0 used for kinematics and optics calibration

¹²C(e,e'K+)¹²_AB used for kinematics and optics calibration

 $^{12}C(e,e'K^{+})^{12}{}_{\Lambda}B$

Data taking : ~90 hours w/ 30 μA

<u>Result</u>

ID	Ex [MeV]	Cross section [nb/sr]
#1	0	89±7 (stat.)
		±19 (sys.)
#2	11.2±0.1 (stat.)	98±7 (stat.)
	±0.1 (<i>sy</i> s.)	± 22 (sys.)

Theory by Sotona et. al.

 $(1.3 < E\gamma < 1.6 \text{ GeV}, 1 < \theta_{K} < 13 \text{ deg.})$

Jπ	Ex	Cross section [nb/sr]			
	[MeV]	SLA	C4	KMAID	
1 ⁻	0	19.7	22.8	20.7	
2⁻	0.14	65.7	82.0	43.0	
2+	10.99	48.3	56.9	38.0	
3+	11.06	75.3	107.3	68.5	

²⁸Si(e,e'K⁺)²⁸^{AI} – First Spectroscopy of ²⁸^{AI}

²⁸Si(e,e'K⁺)²⁸_ΛAl

Res	<u>oult</u>	
ID	Ex [MeV]	Cross section [nb/sr]
#1	0	51±10 (stat.)
		±12 (sys.)
#2	11.0±0.1 (<i>stat.</i>)	78±13 (stat.)
	±0.1 (<i>sy</i> s.)	± 18 (sys.)
#3	19.3±0.1 (<i>stat.</i>)	33±7 (stat.)
	±0.1 (sys.)	± 8 (sys.)

by Sotona et. al.

 $(1.3 < E\gamma < 1.6 \text{ GeV}, 1 < \theta_{K} < 13 \text{ deg.})$

Jπ	Ex	Cross section [nb/sr]			
	[MeV]	SLA	C4	KMAID	
2+,3+	0	92.1	112.7	71.76	
4⁻	9.42	134.9	167.7	117.5	
3⁻	9.67	91.3	109.1	58.5	
4+	17.6	148.4	184.7	135.1	
5+	17.9	139.1	167.1	89.9	

⁷Li(e,e'K+)⁷_{Λ}He – First Observation of $\frac{1}{2}$ + G.S. of ⁷_{Λ}He

* Hiyama 1997

HKS (E01-011) Physics Outputs

- $^{12}{}_{\Lambda}B$ Best resolution HY-reaction spectrocopy (<470keV FWHM)
 - Generally consistent with E89-009 and Hall A
 - Answer to gs width problem suggested by Hall A data
- ${}^{7}_{\Lambda}$ He First reliable g.s. energy and cross section measurement
 - Neutron rich hypernucleus
- ${}^{28}_{\Lambda}AI$ First beyond p-shell hypernuclei by (e,e'K⁺)
 - LN interaction, Shell models, Door to medium heavy HY

Work To Do:

- Consistence check on ${}^{28}_{\Lambda}$ Al Spectrum
- Refine cross section estimation