A Compton Polarimeter for Hall C

Simon Taylor

January 8, 2003

- Overview
- Design Goals/Constraints
- Chicane
- Laser Options
- Photon Detector
- Electron Detector
- Outlook

Overview

Compton polarimetry:

Scatter circularly-polarized laser photons off longitudinally-polarized electrons.

Differential Cross Section:

$$\frac{d\sigma}{dk} = \frac{d\sigma_0}{dk} \left(1 + P_{\gamma} P_e A_l(k) \right)$$

- k = backscattered photon energy
- P_{γ} = laser light polarization,
- P_e = electron beam polarization.

Asymmetry:

$$A_{l} = \frac{2\pi r_{e}^{2}a}{k_{max}\frac{d\sigma_{0}}{dk}}(1 - \rho(1 + a))\left[1 - \frac{1}{(1 - \rho(1 - a))^{2}}\right]$$

- k_{max} = maximum backscattered photon energy
- $\rho = k/k_{max}$
- r_e = classical radius of electron
- a depends on laser photon and electron beam energies.

Out[291]= - Graphics -

Overview (cont.)

Maximum Luminosity:

$$\mathcal{L}_{max} = \frac{I_e P_{\gamma}}{e k_0 c} \frac{1}{\varepsilon_e + \varepsilon_{\gamma}}$$

- I_e = electron beam current
- $P_{\gamma} = \text{laser power}$
- $k_0 = \text{laser photon energy}$
- ε_e = electron beam emittance $\approx 1 \times 10^{-9}$ meterradian
- ε_{γ} = laser beam emittance $\geq \lambda/4\pi$.

Non-zero crossing angle α :

$$\mathcal{L} \approx \frac{1 + \cos \alpha}{\sqrt{2\pi}} \frac{I_e P_{\gamma}}{e k_0 c} \frac{1}{\sqrt{\sigma_e^2 + \sigma_{\gamma}^2}} \frac{1}{\sin \alpha}$$

• $\sigma_{e,\gamma}$ Gaussian width at beam waist.

Time required for δP_e statistical uncertainty:

$$\Delta t = \frac{1}{\langle A_l \rangle^2 \, \delta P_e^2 \sigma_{TOT} \mathcal{L}}$$

Design Goals/Constraints

Fit Compton apparatus within Hall C tunnel

- Preserve polarized target capability
- Preserve Møller apparatus

Track electron polarization over time frame of several hours, not several days

- Need high luminosity, large asymmetry Keep systematic errors to minimum:
 - Would like 1%
 - At least aim for a few percent a la Hall A
 Cross-calibrate to Hall C Møller polarimeter

Design polarimeter usable for range of electron energies

The Chicane

Four dipole design allows detection of backscattered photons.

- Dipole length=1.0 m with 25.4 mm gap
- D1 to D2 (D3 to D4) separation=2 m
- Deflection angle $\theta = 10^{\circ}$ up to $E_e \approx 2.5$ GeV

Reduce θ to 2.5° for higher energy – reconfiguration needed!

• laser photon/electron beam interaction region between D2 and D3

Positioned in tunnel downstream of Møller.

• Need about 9.5 m of space...

Laser Options

 $\langle A_l \rangle$ and k_{max} increase with shorter wavelengths.

• We are considering green (e.g. Argon-Ion) or ultraviolet (e.g. excimer) lasers.

Maximize luminosity:

- Fabry-Perot cavity a la Hall A
- Intra-cavity design a la Mainz ← we currently favor this approach

Method	λ (nm)	Power (Watts)	E_{γ}^{max} (MeV)	$\int dE \sigma$ (mb)	Rate (KHz)	(<i>A</i>) (%)	t (1%) (min)
Hall A	1064	2100	23.7	514	350.4	0.68	16
Ar–Ion	514	10	48.1	501	0.8	1.37	1762
-intra-cavity		200			15.7		225
UV ArF	193	32	119.8	463	0.9	3.36	262
-intra-cavity		640			17.5		181
UV KrF	248	60	95.4	476	2.2	2.69	165
-intra-cavity		640			43.2		78

Table 2: Figure–of–merit comparison of proposed laser options for the Hall C Compton polarimeter, for comparison, the Hall A configuration is also shown. The figure–of–merit is simply the time needed for a 1% (statistical) measurement of the electron beam polarization assuming an 80% polarized beam at 180 μ A. Further assumptions include $\sigma_e = \sigma_{\gamma} = 100~\mu$ m, $E_{e,beam} = 1.165~\text{GeV}$ and a crossing angle of 2 degrees between the electron and laser beams.

Photon Detector

Requirements:

- High density, high Z material
- Fast time response
- Good energy resolution
- Radiation-hardness

Some candidates:

Material	$ au(\mathrm{ns})$	$\rho(g/cm^3)$	$N_{\gamma}/{\rm MeV}$	$X_0(\mathrm{cm})$	$R_M(\mathrm{cm})$
NaI(Tl)	230	3.67	38000	2.6	4.5
CsI(undoped)	16,35?	4.51	2300	1.9	3.8
$Bi_4Ge_3O_{12}$ (BGO)	300	7.13	8200	1.1	2.4
$PbWO_4$	$\sim 5, \sim 20,$	8.28	~ 500	0.9	2.2
	$\sim 100, \sim 1000$				

Currently favor PbWO₄

- Highest density, smallest radiation length, fast time response, high radiation hardness
- Caveat: low light output

Electron Detector

Scattered electrons are defected more by dipole magnets D3 and D4 than primary beam.

Detector Options:

• Scintillating fibers

Prototype being built for Mainz Compton Polarimeter

Concern: radiation-hardness of fibers

Silicon micro-strips

Hall A already has such detectors: can we learn from their experience?

Outlook

Design is still in planning stage

- Ideas taking shape
- Exploring manageable number of options

Learn from Mainz experience

• Use their intra-cavity design for laser?

Learn from Hall A experience

• Use their photon/electron detector designs as starting point?

Compton Polarimeter working group

• JLAB, MIT, UConn, Yerevan,...