Preliminary Spin Asymmetry Results from SANE James Maxwell Univ. of Virginia Polarized Target Group Hall C Winter Meeting, Newport News, VA, 1.15.2011

SANE Kinematic Coverage

SANE

• A_{\perp} largely unexplored, particularly at high x

Matrix Element d₂

 $\mathbf{d_2} = \int_0^1 x^2 \left(2\mathbf{g_1} + 3\mathbf{g_2} \right) dx$

Preliminary Results

- Preliminary cuts for asymmetries
 - Reconstructed cluster energies >1.0 GeV
 - Single cluster events in calorimeter
 - Electrons tagged by Čerenkov to match cluster in calorimeter

$$A_{\parallel,\perp} = \frac{1}{C_N f P_B P_T} \left(\frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \right) + A_{RC}$$

In addition to counting yields (N), need corrections due to:

- P_B Beam Electron Polarization
- P_T Target Proton Polarization

• f – Dilution Factor: Packing fraction, Protons in ¹⁴NH,

Preliminary Results

- Preliminary cuts for asymmetries
 - Reconstructed cluster energies >1.0 GeV
 - Single cluster events in calorimeter
 - Electrons tagged by Čerenkov to match cluster in calorimeter

$$A_{\parallel,\perp} = \frac{1}{C_N f P_B P_T} \left(\frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \right) + A_{RC}$$

- In addition to counting yields (N), need corrections due to:
 - P_T Target Proton Polarization
 - P_B Beam Electron Polarization
 - f Dilution Factor: Packing fraction, Protons in ¹⁴NH₃

Preliminary Results: Target Polarization

• "Error" on averaged CC is standard deviation of CCs

Preliminary Results: Target Polarization

Charge averaged absolute target polarization per configuration:
5.9-perp: 69% 4.7-perp: 66% 5.9-para: 66% 4.7-para: 68%

Preliminary Results: Beam Polarization

Beam polarization highly dependent on beam energy
 Labels: beam energies for sets of runs

From Packing Fraction to Dilution Factor: HMS

• Runs 73000-73041 • Beam E = 4.7 GeV • Parallel field • HMS_P = 3.2 GeV• HMS $\theta = 20.2^{\circ}$ Stable total asymmetries, small charge asymmetries

Blue – Total asymmetry of each run (corrected by dead time, polarization, and charge) Green – Charge asymmetry

* Slide from Hoyoung Kang

From Packing Fraction to Dilution Factor: HMS

- Comparing data with Monte Carlo results assuming 50% and 60% packing fraction of target, 60.4% packing fraction is determined for this target.
- MC directly gives the dilution factor as below.

* Slide from Hoyoung Kang

Preliminary Parallel Asymmetry: HMS

- Applying this dilution factor to the data of runs 73000-73041 shows the following very preliminary parallel asymmetry. (no radiative correction included)
 - The tendency and scale are roughly similar to Hall B eg1 result and RSS at Q² = 1.3 GeV²

Q² = 1.862 GeV² 1.087 GeV < W < 1.612 GeV

* Slide from Hoyoung Kang

Preliminary Parallel Asymmetry: HMS, Hall B

A₁ from SANE HMS (left) and A₁ from CLAS EG1b (right)
Q² ~1.862 GeV² on left, Q² ~1.71 GeV² on right
For A₂~0, A₁~ DA₁, where D is a kinematic factor

* Slide from Hoyoung Kang
Hall C Winter Meeting

Preliminary Results: Parallel Asymmetries

- Parallel Experimental Asymmetries shown next:
 - Integrated over all kinematics for each run
 - Charge normalization applied, no deadtime correction here
 - "Good" electron yields, passed cuts mentioned before
 - Uses crude, preliminary dilution factor for each target load
 - Finalized dilutions are forthcoming, but this approximation is most likely good to within a few percent
- After these, will show a very preliminary look at parallel asymmetries in kinematic bins, x and W
 - The placeholder dilution factor is particularly misleading at high *x*, low W

Preliminary Results: 4.7 GeV Parallel Asymmetries

Preliminary Results: 5.9 GeV Parallel Asymmetries

Preliminary Experimental Asymmetries vs. Bjorken x

Preliminary Experimental Asymmetries vs. W

Work in Progress and to Come

- Dilution factors being finalized with BETA data
- Parallel field configuration runs well understood
- Perpendicular field configuration runs analysis well underway
- A₁ and A₂ from measured asymmetries
 - Radiative Corrections to these asymmetries
- g_1 and g_2 from A_1 and A_2
 - Use Bosted-Christy world F₁^p data parametrization
- Systematic error study
- Host of related Physics: sum rules, matrix elements, models

Hall C Winter Meeting, 1.15.2011

6

7

al N

Spin structure functions describe proton's inner workings

$$g_1(x, Q^2) = \frac{1}{2} \sum e_i^2 \left[q_i^+(x, Q^2) - q_i^-(x, Q^2) \right]$$
$$g_2(x, Q^2) = g_2^{WW}(x, Q^2) + \overline{g_2}(x, Q^2)$$

• Where g_2^{WW} depends on g_1 , and g_2 depends on transversity SSF and quark-gluon correlations

Expressed in terms of spin asymmetries:

$$g_1 = \frac{F_1}{1 + \gamma^2} (A_1 + \gamma A_2) \quad g_2 = \frac{F_1}{1 + \gamma^2} \left(\frac{A_2}{\gamma} - A_1\right)$$

Spin structure functions describe proton's inner workings

$$g_1(x, Q^2) = \frac{1}{2} \sum e_i^2 \left[q_i^+(x, Q^2) - q_i^-(x, Q^2) \right]$$
$$g_2(x, Q^2) = g_2^{WW}(x, Q^2) + \overline{g_2}(x, Q^2)$$

- Where g_2^{WW} depends on g_1 , and g_2 depends on transversity SSF and quark-gluon correlations 2xM
- Expressed in terms of spin asymmetries:

$$g_1 = \frac{F_1}{1 + \gamma^2} (A_1 + \gamma A_2) \quad g_2 = \frac{F_1}{1 + \gamma^2} \left(\frac{A_2}{\gamma} - A_1\right)$$

 $/Q^2$

• We access A₁ and A₂ via asymmetry measurements with longitudinal and transverse polarizations:

$$\begin{split} A_{1} &= \frac{1}{(E+E'D')} \left((E-E'\cos\theta)A_{\parallel} - \frac{E'\sin\theta}{\cos\phi}A_{\perp} \right) \\ A_{2} &= \frac{\sqrt{Q^{2}}}{(2ED')} \left(A_{\parallel} - \frac{E-E'\cos\theta}{E'\sin\theta\cos\phi}A_{\perp} \right) \end{split}$$

 $=\frac{1}{C_N f P_B P_T} \left(\frac{N^{|\downarrow} - N^{|\downarrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}}\right)$

• Where these asymmetries depend on counts, beam polarization, target polarization, dilution factor

 $+A_{RC}$

• We access A₁ and A₂ via asymmetry measurements with longitudinal and transverse polarizations:

$$\begin{split} A_{1} &= \frac{1}{(E+E'D')} \left((E-E'cos\theta)A_{\parallel} - \frac{E'sin\theta}{cos\phi}A_{\perp} \right) \\ A_{2} &= \frac{\sqrt{Q^{2}}}{(2ED')} \left(A_{\parallel} - \frac{E-E'cos\theta}{E'sin\theta cos\phi}A_{\perp} \right) \\ A_{\parallel,\perp} &= \frac{1}{C_{N}fP_{B}P_{T}} \left(\frac{N^{\uparrow\downarrow} - N^{\uparrow\uparrow}}{N^{\uparrow\downarrow} + N^{\uparrow\uparrow}} \right) + A_{RC} \end{split}$$

• Where these asymmetries depend on counts, beam polarization, target polarization, dilution factor

Preliminary Results: Parallel w/ Kinematic Cuts

4.7 GeV Beam

5.9 GeV Beam

W>1.9GeV

W<1.9GeV