The GEp-2 $\mathbf{2}$ Experiment at Jefferson Lab Hall-C

2011 HALL-C USERS MEETING

Mehdi MEZIANE, The College of William and Mary and the JLab GEp-2 γ Collaboration

OUTLINE

\& Introduction

*Beyond the Born Approximation

*The GEp-2 γ Experiment at Jlab:

$>$ Goal
$>$ Analysis
$>$ Polarization Component Ratio and P_{1} quasi-final results

* Determination of the 2γ amplitudes

Conclusion

Polarization/Rosenbluth data crisis

- Over the past decade both intensive theoretical and experimental effort have been done aiming at explaining the Rosenbluth/Polarization discrepancy.
- The difference between the two experimental ratios increases systematically with Q^{2} for $\mathrm{Q}^{2}>2 \mathrm{GeV}^{2}$
- Two methods, two different results
$>$ Incomplete radiative corrections?
S Something beyond the Born Approximation? (one photon exchange)

P Possible Two-photon exchange effect? (TPEX)

- This experiment is a search for a kinematical dependence in $\mathbf{P}_{\mathrm{t}} / \mathbf{P}_{\ell}$ vs $\boldsymbol{\varepsilon}$

Jones et al., Phys. Rev. Lett. 84, 1398 (2000): Gayou et al., Phys. Rev. Lett. 88, 092301 (2002); Punjabi et al., Phys. Rev. C 71, 055202 (2005): Puckett et al., Phys. Rev. Lett 104, 242301 (2010);

$$
P_{+}=-\sqrt{\frac{2 \varepsilon(1+\varepsilon)}{\tau}} \frac{1}{\sigma_{r}}\left\{G_{E} G_{M}\right\}
$$

Transverse polarization.

$$
\begin{gathered}
P_{1}=\sqrt{1-\varepsilon^{2}} \frac{1}{\sigma_{r}}\left\{G_{M}^{2}\right\} \\
\sigma_{r}=G_{M}^{2}+\frac{\varepsilon}{\tau} G_{E}^{2}
\end{gathered}
$$

Reduced cross section.

$$
R=-\mu_{\mathrm{P}} \sqrt{\frac{(1+\varepsilon) T}{2 \varepsilon}} \frac{P_{+}}{P_{\mathrm{I}}}=\mu_{\mathrm{P}} \frac{G_{E}}{G_{M}}
$$

Polarization component ratio.
(WM) Beyond the Born-Approximation formalism

Theoretical Estimates

Hadronic (elastic)
Dominated by correction to G_{M}.
P.Blunden et al., Phys.Rev.C72: 034612 (2005)

Generalized Parton Distribution Dominated by F_{3} correction and correction to G_{E}.
 A.Afanasev et al., Phys. Rev.D72:013008 (2005)

Born value calculated from the $\mathrm{G}_{\mathrm{Ep}} / \mathrm{G}_{\mathrm{Mp}}$ fit of the polarization data

Both theories describe Rosenbluth data but have opposite prediction for $G_{E p} / G_{M p}$.

Theoretical Estimates

Hadronic (elastic)
Dominated by correction to G_{M}.
P.Blunden et al., Phys.Rev.C72: 034612 (2005)

Generalized Parton Distribution Dominated by F_{3} correction and correction to G_{E}.
 A.Afanasev et al., Phys. Rev.D72:013008 (2005)

Born value calculated from the $\mathrm{G}_{\mathrm{Ep}} / \mathrm{G}_{\mathrm{Mp}}$ fit of the polarization data

Both theories describe Rosenbluth data but have opposite prediction for $G_{E p} / G_{M p}$.

The GEp- 2γ Experiment

-We look for a kinematical dependence of P_{t} / P_{ℓ} to detect a possible two-photon exchange effect in the ep-scattering.
Key idea:

- fixed Q ${ }^{2}$.
- same spin transport.
(spin precession fixed)
- same analyzing power. (P_{p} fixed)
precision limited only by statistics ($\mathbf{0 . 0 1}$ for a ratio value of 0.7)
unlike Rosenbluth, very small p.t.p systematics ≤ 0.006 : Ay , h
 cancel out in the P_{t} / P_{1} ratio.
$80 \mu \mathrm{~A}$ beam current. 85\% pol. 20 cm LH 2 target.

$\mathrm{E}_{\mathrm{e}}, \mathrm{GeV}$	p_{p}	$\mathrm{E}_{\mathrm{e}}{ }^{\prime}$	$\theta_{\mathrm{p}}, \operatorname{deg}$	θ_{e}	ε range	$\left\langle\mathrm{Q}^{2}\right\rangle$
1.867	2.068	0.527	14.13	106	$.130-.160$	2.49
2.839	2.068	1.507	30.76	45.3	$.611-.647$	2.49
3.549	2.068	2.207	35.39	32.9	$.765-.786$	2.49

Spin Precession Check

The polarization component ratio and $\mathrm{A}_{y} \mathrm{P}_{1}$ are independent of the reconstructed kinematics
dx/dz (dispersive, vertical) and dy/dz (non-dispersive, horizontal) are the slopes at the target.

In each panel, result integrated over the other kinematic variables: $\mathbf{d x} / \mathbf{d x}, \mathrm{dy} / \mathrm{dz}$, δ or $y_{\text {tgt }}$ (target length seen from the spectrometer)

Good understanding of the spin precession calculation through the spectrometer magnets.

Good quality of the COSY Spin

 transport matrix.

$$
\varepsilon=0.15, \mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}
$$

Systematic Uncertainties on R

	$\varepsilon=0.152$	$\varepsilon=0.635$	$\varepsilon=0.785$
$\theta_{\text {bend }}(2 \mathrm{mrad})$	0.0018	0.0018	0.0019
$\varphi_{\text {bend }}(0.5 \mathrm{mrad})$	0.0102	0.0061	0.0058
$\delta(0.1 \%)$	0.0036	$4.402 \mathrm{E}-05$	0.0002
$\varphi_{\text {fpp }}(0.14 \mathrm{mrad})$	0.0039	0.0025	0.0024
$\mathrm{E}_{\text {beam }}(0.05 \%)$	0.0015	0.0001	$5.7876 \mathrm{E}-05$
False Asymmetry	0.0059	0.0063	0.0059
TOTAL	0.0131	0.0093	0.0088

- Half of the false asymmetry correction as false asymmetry systematic uncertainty
- Systematics dominated by the uncertainty on $\varphi_{\text {bend }}$ and the false asymmetry correction

Polarization Component Ratio

- No evidence of an epsilon dependence at a o.or level for a ratio of 0.7 in the polarization data at $\mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}$.
- Models predict a bigger correction (opposite sign) at small ε, not seen in the data.
- Theoretical predictions are with respect to the Born approximation. (calculated from the fit to the polarization data)
- Small point-to-point systematics
- Radiative corrections calculated with MASCARAD ~0.01-0.02\% (Afanasev et.al, Phys. Rev. D 64, 113009 (2001))

P.Blunden et al., Phys.Rev.C72: 034612 (2005)
A.Afanasev et al., Phys.Rev.D72:013008 (2005) N. Kivel and M. Vanderhaeghen Phys.Rev.Lett.103:092004 (2009) Bystritskiy, Kuraev and Tomasi-Gustafsson, Phys.Rev.C75: 015207 (2007)

Zclose Dependence

- The analyzing power is not constant within the whole width of the analyzer.

Zclose Dependence

- The analyzing power is not constant within the whole width of the analyzer.
- The form factor ratio is constant within the analyzer for the 3 kinematics.

Zclose Dependence

phi vs zclose

- The analyzing power is not constant within the whole width of the analyzer.
- The form factor ratio is constant within the analyzer for the 3 kinematics.
- Dilution of the analyzing power from bad reconstructed events.

Zclose Dependence

phi vs zclose

- The analyzing power is not constant within the whole width of the analyzer.
- The form factor ratio is constant within the analyzer for the 3 kinematics.
- Dilution of the analyzing power from bad reconstructed events.

Longitudinal Polarization I

- Matching acceptance cut : cut to match the acceptance of the largest ε kinematic, to that of the $\varepsilon=0.15$ one.
\longrightarrow Same spin transport, Same A_{y} to the 10^{-3} level
- Smallest ε kinematic determines the analyzing power.

Longitudinal Polarization I

- Matching acceptance cut : cut to match the acceptance of the largest ε kinematic, to that of the $\varepsilon=0.15$ one.

\longrightarrow Same spin transport, Same A_{y} to the 10^{-3} level

- Smallest ε kinematic determines the analyzing power: $\mathrm{A}_{\mathrm{y}}{ }^{\text {ave }}=\mathbf{0 . 1 5 0 7 9} \pm \mathbf{0 . 0 0 0 3 8}$
- $P_{\ell \text { Born }}$ calculated from $E_{\text {beam }}$, the momentum p and the fitted ratio value from this experiment
- $\mathbf{1 \%}$ absolute, $\mathbf{0 . 5 \%}$ point-to-point systematic errors (Möller dominated)
- Radiative corrections smaller than polarization component ratio (Afanasev et.al, Phys. Rev. D 64, 113009 (2001))

Longitudinal Polarization II

Longitudinal Polarization II

Longitudinal Polarization II

Longitudinal Polarization II

Longitudinal Polarization II

Longitudinal Polarization II

Empirical determination of TPEX amplitudes

$\begin{array}{l}\text { - Fit the ratio }-\mu_{\mathrm{p}} \sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{f}}{P_{f}} \\ \text { with a constant }\end{array}=\mu_{\mathrm{P}} \frac{G_{E}^{p}}{G_{M}^{p}}$ in the OPEX $)$

Empirical determination of TPEX amplitudes

$\left.\begin{array}{l}\text { - Fit the ratio }-\mu_{\mathrm{p}} \sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{+}}{P_{\ell}} \\ \text { with a constant }\end{array}=\mu_{\mathrm{p}} \frac{G_{E}^{p}}{G_{M}^{p}}\right)$ in the OPEX $)$

- Fit $\frac{P_{\ell}}{P_{\ell \text { Born }}}$ with $1+A \varepsilon^{4}(1-\varepsilon)^{1 / 2}$

Empirical determination of TPEX amplitudes

$\begin{array}{l}\text { - Fit the ratio }-\mu_{\mathrm{p}} \sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{+}}{P_{t}} \\ \text { with a constant }\end{array}\left(=\mu_{\mathrm{p}} \frac{G_{E}^{p}}{G_{M}^{p}}\right)$ in the OPEX $)$

- Fit $\frac{P_{\ell}}{P_{\ell \text { Born }}}$ with $1+A \varepsilon^{4}(1-\varepsilon)^{1 / 2}$
- Fit $\frac{\sigma_{r}}{\mu_{p} G_{D}}$ with a linear function in $\varepsilon: a+b \varepsilon$

(NM) Empirical determination of TPEX amplitudes

- Fit the ratio $\left.-\mu_{\mathrm{P}} \sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon}} \frac{P_{+}}{P_{f}}\right]\left(=\mu_{\mathrm{P}} \frac{G_{E}^{P}}{G_{M}^{p}}\right)$ in the OPEX $)$ with a constant
- Fit $\frac{P_{\ell}}{P_{\ell \text { Born }}}$ with $1+A \varepsilon^{4}(1-\varepsilon)^{1 / 2}$
- Fit $\frac{\sigma_{r}}{\mu_{p} G_{D}}$ with a linear function in $\varepsilon: a+b \varepsilon$
- Extract G_{M}^{2} using the G_{E}^{P} / G_{M}^{p} value from $\underbrace{P_{f} / P_{f} \text { fit }}_{\text {and } a, b}$

Empirical determination of TPEX amplitudes

(13) Empirical determination of TP

with a constant

- Fit $\frac{P_{\ell}}{P_{\ell \text { Born }}}$ with $1+A \varepsilon^{4}(1-\varepsilon)^{1 / 2}$
- Fit $\frac{\sigma_{r}}{\mu_{p} G_{D}}$ with a linear function in $\varepsilon: a+b \varepsilon$
- Extract G_{M}^{2} using the G_{E}^{P} / G_{M}^{P} value from P_{+} / P_{ℓ} fit

$$
\begin{aligned}
& y_{2 \gamma}^{M}=\operatorname{Re}\left(\delta \tilde{G}_{M} / G_{M}\right) \\
& y_{2 \gamma}^{E}=\operatorname{Re}\left(\delta \tilde{G}_{E} / G_{M}\right) \\
& y_{2 \gamma}^{3}=\operatorname{Re}\left(\delta \tilde{F}_{3} / G_{M}\right) v / M^{2}
\end{aligned}
$$

best constrained
are at the 3% level, opposite sign, cancel partially in the observables

 ε
Vanderhaeghen, Kivel, Guttmann, Meziane (submitted to PRL)

CONCLUSION

- The polarization component ratio is independent of the reconstructed kinematics.
- No evidence of an epsilon dependence at a o.or level for a polarization component ratio of 0.7 at Q^{2} of $2.5 \mathrm{GeV}^{2}$.
- Results show an enhancement at small ε for the longitudinal polarization observable.
- PRL submitted for publication.
- Determination of the TPEX amplitudes is possible
- TPEX puzzle remains:

Need more $>$ Non linearity of the cross section. experimental $>$ Single spin asymmetries.
constrains: $>$ Ratio $\mathrm{e}^{+} / \mathrm{e}^{-}$.

To fully understand, quantify the TPEX.

BACK-UP SLIDES

"Standard" Radiative Corrections

a) bremsstrahlung
b) vertex

e) Bremsstrahlung

Beyond the Born-Approximation

Parity, Wigner time reversal invariance and lepton helicity conservation give the following expansion of the hadronic vertex function (not unique):
> (P.A.M Guichon, M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003))

$$
\Gamma^{\mu}\left(p, p^{\prime}\right)=\tilde{G}_{M} \gamma^{\mu}-\tilde{F}_{2} \frac{p^{\mu}}{M}+\tilde{F}_{3} \frac{\gamma \cdot K p^{\mu}}{M^{2}}
$$

Beyond the Born Approximation a third complex amplitude arises.

Born Approx.
$G_{M}\left(Q^{2}\right), F_{2}\left(Q^{2}\right)$

$$
\tilde{F}_{3}\left(Q^{2}, \varepsilon\right)=0
$$

real

$\tilde{G}_{M}\left(Q^{2}, \varepsilon\right), \tilde{F}_{2}\left(Q^{2}, \varepsilon\right)$ $\tilde{F}_{3}\left(Q^{2}, \varepsilon\right)$ complex

$$
\begin{aligned}
& \tilde{G}_{M}\left(Q^{2}, \varepsilon\right)=G_{M}\left(Q^{2}\right)+\delta \tilde{G}_{M}\left(Q^{2}, \varepsilon\right) \\
& \tilde{G}_{E}\left(Q^{2}, \varepsilon\right)=G_{E}\left(Q^{2}\right)+\delta \tilde{G}_{E}\left(Q^{2}, \varepsilon\right)
\end{aligned}
$$

The kinematical parameter ε is: $\varepsilon=\frac{(s-u)^{2}+t\left(4 M^{2}-t\right)}{(s-u)^{2}-t\left(4 M^{2}-t\right)}$

HMS with Focal Plane Polarimeter

- Two HMS drift chambers for tracking--measure proton momentum and define incident trajectory for FPP.
- Scintillator hodoscopes So and Si for trigger and timing.
- Focal Plane Polarimeter
- Two CH2 analyzers, 55 cm thick
- Two sets of drift chambers track
 protons scattered in analyzer.

BigCal Calorimeter

- 1744 channels electromagnetic calorimeter
- Measure electron angles and energy
- Separate elastic from inelastic background
- From $\frac{6.8 \%}{\sqrt{E}}$ to $\frac{23 \%}{\sqrt{E}}$ energy resolution (E in GeV) due to radiation damage
- Position resolution not very sensitive to
 radiation damage $\sim 5 \mathrm{~mm}$

PHYSICAL ASYMMETRIES

Physical asymmetries (helicity dependent) are obtained by taking the difference between the angular distributions of events of the two helicity states: $\mathrm{f}^{+}(\boldsymbol{\theta}, \phi)$-f ${ }^{-}(\boldsymbol{\theta}, \boldsymbol{\phi})$

Focal plane asymmetry can be written as a sine function with a phase shift which is related to the polarization components ratio at the focal plane.

$$
f^{+}(\theta-\varphi)-f(\theta-\varphi)=B \sin (\varphi+\Delta \varphi)
$$

With the FPP, we measure the proton polarization after undergoing precession through the HMS magnets.

$$
B=h A_{y} \sqrt{\left(P_{t}^{\text {PP }}\right)^{2}+\left(P_{n}^{\text {PP }}\right)^{2}}
$$

$$
\tan \Delta \varphi=-\frac{P_{t}^{\text {PP }}}{P_{n}^{\text {PP }}}, P_{n}^{\text {PP }} \approx P_{1}^{\text {Tot }} \sin \chi_{\theta}
$$

FALSE ASYMMETRIES

- The angular distribution is given by:

$$
\begin{aligned}
N^{ \pm}(p, \theta, \varphi)= & N_{0}^{ \pm} \frac{\varepsilon(p, \theta)}{2 \pi}\left[1+\left(c_{1} \pm A_{y} P_{y}^{f p p}\right) \cos \varphi+\left(s_{1} \mp A_{y} P_{x}^{f p p}\right) \sin \varphi+c_{2} \cos (2 \varphi)\right. \\
& \left.+s_{2} \sin (2 \varphi)+\ldots\right]
\end{aligned}
$$

Number of incident proton with \pm helicity state.
$\varepsilon(p, \theta)$
$A_{y}(p, \theta) \quad$ Analyzing power of the $\vec{p}+\mathrm{CH}_{2}$ reaction.

c_{1}, S_{1}, \ldots
Fraction of proton with momentum p scattered with an angle θ.

Polarization components at the focal plane.

Fourier coefficients of helicity independent instrumental asymmetries. (sum of N^{+}and N^{-}, cancelled in first order)

$$
\Lambda_{0}=\sum_{i} c_{i} \cos \varphi_{i}+s_{i} \sin \varphi_{i}
$$

- Maximizing the Likelihood function: $\left(\mathrm{S}_{\mathrm{ij}}\right.$ COSY spin transport matrix elements)

$$
L\left(P_{+}, P_{1}\right)=\prod_{i=1}^{N_{\text {oever }}}\left[1+h \varepsilon_{i} A_{y}^{(i)}\left(S_{y+}^{(i)} P_{+}+S_{y l}^{(i)} P_{1}\right) \cos \varphi_{i}-h \varepsilon_{i} A_{y}^{(i)}\left(S_{x+}^{(i)} P_{+}+S_{x l}^{(i)} P_{1}\right) \sin \varphi_{i}+\Lambda_{0}^{(i)}\right]
$$

Small negative correction at the $2^{\text {nd }}$ order in the P.C. ratio for the 3 kin. : $|\Delta R| \approx 0.013$

Other determination of TPEX amplitudes

Based on: - The linearity of the reduced cross section σ_{r}

- No ε-dependence of the polarization transfer ratio
- TPEX amplitudes vanish at $\varepsilon=1$

The reduced cross section gives information about the amplitude $\delta \tilde{G}_{M}$

$$
\sigma_{r}=G_{M}^{2}\left\{\tau+\varepsilon R_{0}^{2}+2 \tau \frac{\delta \tilde{G}_{M}}{G_{M}}+2 \varepsilon R_{0}^{2} \frac{\delta \tilde{G}_{E}}{G_{E}}\right\} \text { with } R_{0}=\frac{G_{E}}{G_{M}}
$$

- Neglect the last term (cross check afterward)

- a is determined by the slope of the reduced cross section
D. Borisyuk, A. Kobushkin arXiv:1012.3746vı

Other determination of TPEX amplitudes

The polarization component ratio gives information about the amplitude $\delta \tilde{G}_{E}$ $R=R_{0}\left\{1+\frac{\delta \tilde{G}_{E}}{G_{E}}-\frac{\delta \tilde{G}_{M}}{G_{M}}-\frac{\varepsilon(1-\varepsilon)}{1+\varepsilon} \frac{\delta \tilde{G}_{3}}{G_{M}}\right\}$ with $\delta \tilde{G}_{3}=u \tilde{F}_{3} / 4 M^{2}$

- Rough estimate of $\delta \tilde{G}_{E} \longrightarrow$ Need the determination of $\delta R=R-R_{0}$

The TPE correction to $P_{\underline{e}}$ gives information about the amplitude $\delta \tilde{G}_{3}$

$$
\delta P_{\ell}=-2 P_{\ell} \varepsilon\left\{\frac{R_{0}^{2} \delta R}{\varepsilon R_{0}^{2}+\tau}-\frac{\varepsilon}{1+\varepsilon} \frac{\delta \tilde{G}_{3}}{G_{M}}\right\}
$$

- Two few data points
$\cdot \delta \tilde{G}_{3}$ computed at the ε value of the data points
D. Borisyuk, A. Kobushkin arXiv:1012.3746vi

