SHMS Aerogel Detector update

Hall C Users Meeting

The Catholic University of America

Tanja Horn, <u>Marco Carmignotto</u>, Ibrahim Albayrak, Jullianna Couto, Laura Rothgeb, Michael Metz, Nathaniel Hlavin, and many summer interns!

University of South Carolina

Yordanka Illieva, Kevin Wood, Rachel Kuprenas

Mississippi State University

Dipangkar Dutta

Florida International University

Joerg Reinhold, Andira Ramos

Yerevan Physics Institute

Hamlet Mkrtchyan, Arthur Mkrtchyan, Arshak Asaturyan, Vardan Tadevosyan,

S. Zhamkochyan

01/25/2013

Overview

Kaon Aerogel Detector

- \rightarrow Concepts and Design
- \rightarrow Construction and Assembly

Detector components characterization:

 \rightarrow PMTs

- Quantum efficiency
- Uniformity of photocathode

 \rightarrow Aerogel

- Dimension
- Optical properties
 - Refractive Index
 - Transmittance

CONCEPTS AND DESIGN

Why an Aerogel detector?

Access to strangeness physics

PID @ SHMS

TOCK PLACE 2 18. In

SHMS base detector system provides particle identification for *e*, π , *p* over the full momentum range

- Noble gas Cerenkov: e/π]
- Heavy gas Cerenkov: π/K
- But no K/p!

• Lead glass: e/π

Kaon x Proton → AEROGEL CERENKOV DETECTOR

R. Asaturyan *et al*, "The aerogel threshold Cherenkov detector for the High Momentum Spectrometer in Hall C at Jefferson Lab", NIM-A (2005)

CONSTRUCTION AND ASSEMBLY

Detector machining completed with:

01 detector box, to hold 14(+6) 5 inches PMTs

03 aerogel trays, for different refractive indexes

http://www.vsl.cua.edu/cua_phy/index.php/MainPage:Nuclear:KaonDetector:Pictures

Detector Assembly

Detector assembled without major mechanical problems:

PMTs placed inside shielding:

Part of the detector at JLab:

✓ Two trays already at JLab

 ✓ Installing of aerogel with n=1.03 and 1.02 on these trays in a semiclean room

Next steps:

- Cover walls with reflective material
- □ Fill trays with aerogel

□ Tests of fully assembly detector with cosmic rays

Installation details

PMT shielding configuration: Aluminum tube and mu-metal cylinder

View of the PMTs window inside the detector

Top view

Ongoing studies:

Effects of the PMTs window installed partially exposed to possible magnetic fields

0

COMPONENTS CHARACTERIZATION

Choosing PMTs

What are the best PMTs set we can use? Studied characteristics:

- \rightarrow Gain
- \rightarrow Quantum efficiency (light collection efficiency)

Different models/manufacturers of PMT

- \rightarrow XP4500/B (already have)
- \rightarrow HMS XP4572 (not available for purchase)
- \rightarrow Hamamatsu R1250 (available for purchase)

Kaon Detector Prototype

Design for construction

Section of the design

Constructed prototype

Inner part covered with Mylar

Photon Yield Measurements

Low refractive index aerogel has very low light yield...

Photon yield of the prototype, just exchanging PMTs

Number of photo-electrons

XP4500/B PMTs are better in QE. Are there alternative/better options?

Results of PMTs scans

XP4500/B

COMPONENTS CHARACTERIZATION

PMTs

0

- Dimensions
- Refractive index
- Transparency

Dimensions of Aerogel Tiles Х y Thickness measurements Aerogel SP-30 tile length x Aerogel SP-30 thickness Aerogel SP-30 tile length y AU AU Length (x) (cm cm Length j 11.5 - cm Thicknes 11.2 11.4 11.5 11.1 11.3 0.9 1.0 1.2 1.3 11.1 11.2 11 11.3 11.4 Mean x = 11.31 + 0.04 cm Mean y = 11.31 + 0.04 cm Thickness = 1.07 + 0.08 cm

Position-dependent variation: 2-13%

Tile-to-tile variation: <16%

Refractive index

Setup for measuring the refractive index

Refractive index

n = 1.030 and 1.020

We will characterize a larger sample of tiles

n = 1.015

Transmittance

Horizontal alignment

Perkin/Elmer Lambda 750 Spectrometer

Tile aligned for measurement

Transmittance Distributions JFCC SP-15

0

Wavelength (nm)	Standard Deviation (%)*
250	0.4
400	4.5
800	5.4

* Includes: statistical, position, and tile-to-tile dependence

Hunt Parameters

Hunt formula $T = A \ e^{-Ct/\lambda^4}$

T=transmittance

C=clarity coefficient [cm/ μ m⁴]

t=thickness [cm]

A=absorption process

Index	Hunt parameter A	Hunt Parameter Ct (μm⁴)	Standard Deviation
SP-15	0.965	0.0141	6.7%
SP-20	0.918	0.0131	2.7%
SP-30	0.853	0.0119	7.4%

This technique does not measure scattered light.

Update on Lowest Index Aerogel

✓ 100 JFCC tiles of index 1.015 have arrived and initial testes have been positive!

One 1.015 aerogel tile on a green paper

- ✓ Ordered a new lot of 180 tiles n=1.015
- ✓ We will get a sample of n=1.010 tiles for prototype tests

[°] NEXT STEPS OF THE PROJECT

Near future...

- \rightarrow Assembly the 1.030 and 1.020 aerogel trays at JLab
- → Measurement of the transflectance of the aerogel

Integrating sphere method

 \rightarrow Receive the second lot of ordered 1.015 tiles

- \rightarrow Receive a sample of 1.010 tiles for studies
- \rightarrow Cosmic ray tests with the fully assembled detector

More details at:

www.vsl.cua.edu/cua_phy