e + HDice target in Hall B

A.M. Sandorfi Jefferson Lab

- challenges with transverse polarization in a $\sim 4\pi$ detector
- the basics of polarizing solid hydrogen
- characteristics with photon beams
- equipment development and schedule for Hall B
- prospects for electron experiments

Hall A+C pol tgt - Jun10

Electron experiments with transversely polarized \vec{H} and \vec{D} in Hall B

- DVCS, DVMP : $\Rightarrow \tilde{E} GPD \rightarrow 2+1$ dimensional tomography \rightarrow quark orbital angular momentum
- Semi-inclusive-DIS : \Rightarrow Collins function \rightarrow transverse $\vec{q}q \rightarrow Asy$ in hadron fragmentation \rightarrow transverse quark orbital angular momentum

 \Rightarrow Sivers function \rightarrow u-d separation in $\vec{N}^{\perp} \rightarrow$ single-spin Asy

- Inclusive-DIS : $\Rightarrow g_2, A_2 PDF \rightarrow color-polarizability of the gluon field$
- N* transition form factors :

 \rightarrow constraining structure of baryons

UVa (Oxford) Transverse $N\vec{H}_3 / N\vec{D}_3$ target with CLAS BdL $\approx 4.2 \ T \times 0.3 \ m$

- large transverse field compensated by chicane
- brem γ 's peaked along incoming e at $\sim 4^{\circ}$

 $\Rightarrow "Sheet of flame"$ $<math display="block">\xrightarrow{4^0} \rightarrow$

⇒large background

• limited acceptance in θ and Q^2

Expected \vec{H} and \vec{D} spin-relaxation times with γ beams:

measured (γ)

projected (γ)

B	0.90 tesla	0.01 tesla	0.40 tesla	0.04 tesla
B × dL (for L=0.12m)	0.108 tesla-m	0.001 tesla-m	0.048 tesla-n	n 0.005 tesla-m
orientation	solenoid	solenoid	saddle	saddle
<i>T</i> ₁ (<i>H</i>)	> 300 d	8 d	>200 d	~ 30 d
<i>T</i> ₁ (D)	> 500 d	55 d	>300d	~200 d
<i>I</i> ₁ (<i>D</i>)	> 300 a	55 a	~300a	$\sim 200 a$

compare to 1.4 T-m with NH₃/ND₃

E08-021 simulation with transversely polarized HD in CLAS

Beam on target at ~0.2°, parallel at center (use small steering magnets)
HD holding field corrects e deflection.

Run conditions

- > 25 days of HD (+5 days of H, D, empty target)
- > 4cm HD, 2 nA
- beam polarization 80%
- > HD-Ice target polarization (H-75%, D-25%)

Solid Deuterium-Hydride (HD) - a new class of polarized target

- a quantum crystal: zero-point motion big fraction of lattice spacing
- polarized at high field (15–17 tesla) and low temperature (~10 mK), in a few days;
- frozen-spin state reached in a few months;
 can then be moved to "warm" (½ K), low field (0.01 0.5 tesla)
- spin can be moved between H and D with RF transitions
- all of the material can be polarized, with almost no background, and the spins last for years !

External Magnetic field rapidly aligns $Ortho-H_2$ and $Para-D_2$ then spin-exchanges with H and D in HD

[•] relaxation switch – A. Honig, Phys. Rev. Lett. 19 (1967).

HD field/low-temp Polarization

- align spins with high B (15 Tesla) and low T (~12 mK)
- polarize small concentrations of J=1 H₂ and D₂
- o-H₂ and p-D₂ spin-exchanges and polarizes HD
- wait for J=1 H_2 and D_2 to decay

Solid Deuterium-Hydride (HD) - a new class of polarized target

- a quantum crystal: zero-point motion big fraction of lattice spacing
- polarized at high field (15–17 tesla) and low temperature (~10 mK), in a few days;
- frozen-spin state reached in a few months;
 can then be moved to "warm" (½ K), low field (0.01 0.5 tesla)
- spin can be moved between H and D with RF transitions
- all of the material can be polarized, with almost no background, and the spins last for years !

- the adventure:

HD targets are not made and used in the same location

 \Rightarrow in principle, this is an advantage (accumulate stock; open in-beam)

Solid Deuterium-Hydride (HD) - a new class of polarized target

- a quantum crystal: zero-point motion big fraction of lattice spacing
- polarized at high field (15–17 tesla) and low temperature (~10 mK), in a few days;
- frozen-spin state reached in a few months;
 can then be moved to "warm" (½ K), low field (0.01 0.5 tesla)
- spin can be moved between H and D with RF transitions
- all of the material can be polarized, with almost no background, and the spins last for years !

- the adventure:

HD targets are not made and used in the same location

- \Rightarrow in principle, this is an advantage (accumulate stock; open in-beam)
- ⇒ in practice, there are many ways to make a mistake when moving macroscopic chunks of solid polarized hydrogen !

HD in-beam polarization:

LEGS/BNL - Fall'06

- $T_1(1/e \text{ dacay}) \sim 1-2 \text{ yr}$
- RF forbidden (mol-mol) $\vec{H} \Rightarrow \vec{D}$ transfer
- RF allowed (inter-mol) \vec{H} flip
- BNL polarizations:
 P(H) = 62%; P(D) = 35%
- projected JLab targets
 P(H) > 75%; P(D) > 40%

Simultaneous measurements of reactions on both \vec{H} and \vec{D}

- polarized reactions on H and D can be separated by
 - moving target spins between H and D;
 - flipping target spins;
 - flipping beam polarization

Simultaneous measurements of reactions on both \vec{H} and \vec{D}

- polarized reactions on H and D can be separated by
 - moving target spins between H and D;
 - flipping target spins;
 - flipping beam polarization

• eg.
$$\int \frac{d\sigma}{d\Omega} d\phi \text{ in meson production :}$$
$$d\sigma \left(\theta, E_{\gamma}\right) = d\sigma_{0}^{HD} - P_{\gamma}^{c} P_{H} \hat{E}_{H} - P_{\gamma}^{c} P_{D}^{V} \hat{E}_{D} + \sqrt{\frac{1}{2}} P_{D}^{T} \hat{T}_{20}^{0}$$

- 4 unknowns with different coefficients;
- straight forward to collect data under 8 different conditions, over-determining the unknowns

HDice program at Jefferson Lab

Thomas Jefferson National Accelerator Facility

HDice program at Jefferson Lab

- BNL HD staff from LEGS
 transfer to Jefferson Lab 2008
 - Renovation of building space to create HD polarizing Lab Feb/2010
 - currently installing dilution refrigerators
 - parallel development of new in-beam cryostat (IBC)

HDice In-Beam Cryostat for CLAS

• designed for both γ (w Start Counter) and e⁻ (w mini-Torus) running

HDice program at Jefferson Lab

- BNL HD staff from LEGS
 transfer to Jefferson Lab 2008
 - Renovation of building space to create HD polarizing Lab Feb/2010
 - currently installing dilution refrigerators
 - parallel development of new in-beam cryostat (IBC)
 - schedule: "*complete*" γ -K/ π production installation $\rightarrow \sim$ Jan/2011
 - test with electrons \rightarrow ~ Apr/2011

• beam heating

- 1 nA of 10 GeV electrons \Rightarrow 1 mW heat in 2 cm of HD (*GEANT*);
- much lower heating than complex targets (NH₃, Butanol) due to lower Z
- very low temperatures are *not* needed to hold HD spins $(T_1 \sim a \text{ year at } \frac{1}{2} \text{ K})$

 \Rightarrow in CLAS IBC the limitation from cooling power alone at $\frac{1}{2}$ K ~ 15 nA

• beam heating

- 1 nA of 10 GeV electrons \Rightarrow 1 mW heat in 2 cm of HD (*GEANT*);
- much lower heating than complex targets (NH₃, Butanol) due to lower Z
- very low temperatures are *not* needed to hold HD spins $(T_1 \sim a \text{ year at } \frac{1}{2} \text{ K})$

 \Rightarrow in CLAS IBC the limitation from cooling power alone at $\frac{1}{2}$ K ~ 15 nA

- molecular HD has 2 paired electrons in a *1s* state $(\uparrow\downarrow) \Leftrightarrow$ *no role in polarization*
- *electron bremsstrahlung* creates free radicals with unpaired electrons; absolute number small, but can hyperfine interaction make these polarization *sinks*?

• beam heating

- 1 nA of 10 GeV electrons \Rightarrow 1 mW heat in 2 cm of HD (*GEANT*);
- much lower heating than complex targets (NH₃, Butanol) due to lower Z
- very low temperatures are *not* needed to hold HD spins $(T_1 \sim a \text{ year at } \frac{1}{2} \text{ K})$

 \Rightarrow in CLAS IBC the limitation from cooling power alone at $\frac{1}{2}$ K ~ 15 nA

- molecular HD has 2 paired electrons in a *1s* state $(\uparrow\downarrow) \Leftrightarrow$ *no role in polarization*
- *electron bremsstrahlung* creates free radicals with unpaired electrons; absolute number small, but can hyperfine interaction make these polarization *sinks*?
- spins diffuse by coherent spin-hopping; process seems to shut down below 0.7 K

• beam heating

- 1 nA of 10 GeV electrons \Rightarrow 1 mW heat in 2 cm of HD (*GEANT*);
- much lower heating than complex targets (NH₃, Butanol) due to lower Z
- very low temperatures are *not* needed to hold HD spins $(T_1 \sim a \text{ year at } \frac{1}{2} \text{ K})$

 \Rightarrow in CLAS IBC the limitation from cooling power alone at $\frac{1}{2}$ K ~ 15 nA

- molecular HD has 2 paired electrons in a *1s* state $(\uparrow\downarrow) \Leftrightarrow$ *no role in polarization*
- *electron bremsstrahlung* creates free radicals with unpaired electrons; absolute number small, but can hyperfine interaction make these polarization *sinks*?
- spins diffuse by coherent spin-hopping; process seems to shut down below 0.7 K
- at $B/T \sim 1$ tesla/0.3 K, $P_e \sim 95\%$ \Rightarrow unpaired e spins locked parallel to H & D \Rightarrow no depolarizing gradients at H and D sites

• beam heating

- 1 nA of 10 GeV electrons \Rightarrow 1 mW heat in 2 cm of HD (*GEANT*);
- much lower heating than complex targets (NH₃, Butanol) due to lower Z
- very low temperatures are *not* needed to hold HD spins $(T_1 \sim a \text{ year at } \frac{1}{2} \text{ K})$

 \Rightarrow in CLAS IBC the limitation from cooling power alone at $\frac{1}{2}$ K ~ 15 nA

- molecular HD has 2 paired electrons in a *1s* state $(\uparrow\downarrow) \Leftrightarrow$ *no role in polarization*
- *electron bremsstrahlung* creates free radicals with unpaired electrons; absolute number small, but can hyperfine interaction make these polarization *sinks*?
- spins diffuse by coherent spin-hopping; process seems to shut down below 0.7 K
- at $B/T \sim 1$ tesla/0.3 K, $P_e \sim 95\%$ \Rightarrow unpaired e spins locked parallel to H & D \Rightarrow no depolarizing gradients at H and D sites
- \exists evidence damage-induced spin relaxation extremely slow at low temp, $T_1 \propto e^{-T(K)}$

• beam heating

- 1 nA of 10 GeV electrons \Rightarrow 1 mW heat in 2 cm of HD (*GEANT*);
- much lower heating than complex targets (NH₃, Butanol) due to lower Z
- very low temperatures are *not* needed to hold HD spins $(T_1 \sim a \text{ year at } \frac{1}{2} \text{ K})$

 \Rightarrow in CLAS IBC the limitation from cooling power alone at $\frac{1}{2}$ K ~ 15 nA

- molecular HD has 2 paired electrons in a *1s* state $(\uparrow\downarrow) \Leftrightarrow$ *no role in polarization*
- *electron bremsstrahlung* creates free radicals with unpaired electrons; absolute number small, but can hyperfine interaction make these polarization *sinks*?
- spins diffuse by coherent spin-hopping; process seems to shut down below 0.7 K
- at $B/T \sim 1$ tesla/0.3 K, $P_e \sim 95\%$ \Rightarrow unpaired e spins locked parallel to H & D \Rightarrow no depolarizing gradients at H and D sites
- \exists evidence damage-induced spin relaxation extremely slow at low temp, $T_1 \propto e^{-T(K)}$
- \Rightarrow very hopeful signs; study of (B,T) parameter space with direct tests next year

extras

Ortho \Leftrightarrow *para decays generate heat, which must be removed to polarize*

 HD condensed into target cell with ~ 2000 50 μm Al cooling wires soldered into 60 holes in copper cooling ring

• Composition of a standard target cell with 4 cm of HD (0.9 moles):

Material	gm/cm ²	mass fraction
HD	0.735	77%
Al	0.155	16%
CTFE	0.065	7 %
(C_2ClF_3)		

Development work to optimize polarization:

	JLab	BNL conditions
Target volume (smaller \varnothing),	15mm $\varnothing imes$ 50mm	25mm \varnothing \times 50mm
\Rightarrow reduced heat in polarizing	\Rightarrow 0.17 μ W /tgt	\Rightarrow 0.50 μ W /tgt
Aluminum purity to improve thermal conductivity	99.9998%	99.99%
Copper purity to improve thermal conductivity • new tgt cells/rings • new <i>cold finger</i> for DF	99.99998%	99.9%
Solenoid: field homogeneity to improve $H \Rightarrow D$ spin transfer	2 × 10 ⁻⁴	few $ imes$ 10 ⁻³
RF coil: field variation with " <i>bird-cage" design</i> improve H ⇒ D spin transfer	~ 13%	~ 100%