
Stephen Wood

Hall C 12 GeV
Analyzer Update

12 GeV Software review

Review of 12 GeV software preparations held June 7-8, 2012

Committee favorable to Hall C approach of building on Hall A

software. Recommends using tools for software quality

assurance (valgrind, oprofile, automated nightly builds…)

Suggests regular tutorials in git use, and a good workflow

model.

Hall C presentations available in Hall C document database

(HallC-doc-733)

 Wood/Jones – Overview of Hall and software strategy

 Niculescu – Review Fortran software and C++ goals

Slide 2

Status of Hall C 6 GeV Analysis Software

• Robust Fortran/CERNLIB code, “ENGINE”, for analysis of

HMS/SOS coincidence and single arm experiments that

has been refined over 15 years of experiments.

• Well understood code for calibrating detectors, calculating

 detector and tracking efficiencies and determining

 spectrometer optics matrix.

• Well tested Monte Carlo simulation code for radiative

 corrections and spectrometer acceptance.

• JLab data mass storage and batch farm well suited to

demands of offline analysis.

• Software management done with CVS

• Sparse documentation

Goals of Hall C 12 GeV Software

Main goal is to have online/offline software ready for start of

experiments.

To achieve this goal decided:

• Modify present Fortran/CERNLIB based analysis code

• Include the SHMS

• Update the HMS sections of code. (new DAQ modules)

• Document the code.

• Develop a C++/ROOT based analysis code based on the existing

Hall A code.

• Add SHMS to the Hall C MC Simulation Code.

• Finished since needed to plan experiments

Online Analysis requirements

• Detector diagnostics (all channels

functioning?)

• Tracking (Focal Plane

position/angular shapes as

expected?)

• Rough PID and efficiencies

 (Take correct amount of data

for desired statistics)

• Preliminary physics spectra

• Versatile histogram display tool

Tracking efficiency

New code developments must preserve drift chamber tracking

algorithms that work well under high rates (> 1MHz)

Fortran Analyzer code, ENGINE

Motivation:

•Robust code has been refined over 15 years.

•Detectors in SHMS similar to HMS. Much of the HMS code can

be copied and reused.

•Minimal effort given the expertise of staff and users.

•Use as a cross check on the C++/Root code

Drawbacks:

CERNLIB is no longer supported.

 Younger collaborators not familiar with Fortran.

New C++ analysis code
Motivation:

•To have a modern object oriented language. Younger collaborators will be

more familiar with C++.

•To have histogramming and data storage in the ROOT

•To have similar style codes in Halls A and C which both use spectrometers so

that users can minimize the cross Hall learning curve.

•To share code development and documentation with Hall A and to take

advantage of ROOT and C++ software developed elsewhere in the world.

•Easy to add third arm detector setups. Hall A has had great success with

adding BigBite and other third arms during the 6 GeV era.

Drawbacks:

Limited C++ expertise in Hall C staff
 C++ code used in just completed QWEAK

Major manpower effort.

 Slide 8

Management Structure
Software Manager

 Mark Jones

Jefferson Lab

C++/ROOT Analyzer

Gabriel Niculescu,

James Madison

University

Fortran Analyzer

 Ed Brash

CNU

Calibrations

John Arrington,

Argonne National Lab

Online histogramming

Pete Markowitz,

Florida International

University

Simulation (SIMC)

 David Gaskell

Jefferson Lab

 Slide 9

Milestones

Present

•Set-up Management structure

•Monte Carlo simulation is ready

•Decided on Git for code management of C++ analyzer

2012

July : Define reference HMS data for testing code

Sep : Documented non-tracking HMS detectors code in Fortran Analyzer

Oct : Make DAQ decoding in C++ Analyzer object-oriented

Oct : Ability to analyzed Hall C data at the raw data level in C++ Analyzer

Dec : Documented the drift chambers and tracking code in Fortran Analyzer

Dec : Verify HMS hodoscope analysis in C++ Analyzer

 Slide 10

Milestones (Part 2)

2013

Jun : SHMS code added to Fortran Analyzer.

July : Full analysis of HMS data with C++ Analyzer ready

Sep : C++ Analyzer ready for SHMS calorimeter tests.

Dec : Full analysis of HMS data with C++ Analyzer verified by comparison

 to Fortran analyzer.

2014

Jan : Scalar and BPM analysis code in C++ analyzer

Feb : Calibration codes ready.

Jul : Analyze cosmic ray data in SHMS with both Analyzers

Sep : First beam, analyze data with both Analyzers

 Slide 11

Present and near term work

Documentation of Fortran code and implementation of C++

• JMU faculty and an undergraduate for hodoscopes.

• CNU faculty and an undergraduate for detector ADC thresholds.

• Yerevan research scientist and a graduate student for calorimeters.

• FIU faculty and an undergraduate for aerogels.

• Hampton faculty and postdocs for wire chambers.

Hall C staff working on

• Reading Hall C style parameter files

• Reads Hall C style hardware->detector mapping

Summary

• Monte Carlo simulation updated for 12 GeV.

• Two pronged approach for software development:

• Updated existing Fortran “ENGINE” code to include SHMS

• Develop new C++ code based on the Hall A C++/Root code

• Created a management structure and milestones to have online/offline data

analysis ready for start of experiments.

GIT

• Distributed Version Control System

• Your local repository down loads the complete history.

• Easy to setup. Could be useful for managing paper/letter

writing, small code development, web pages…

• Easy to make branches and merge them back into the

main branch

• Easy to make commits to your local version.

• See https://hallcweb.jlab.org/wiki/index.php/ROOT_Analyzer/Git

for suggested readings on GIT.

GIT Basics

• Git stores snapshots of files. Codes like CVS store

differences between files.

• Every operation local until “pushed” to public repository

or other developer “pulls” from your copy.

Downloading and building hcana

• See https://hallcweb.jlab.org/wiki/index.php/ROOT_Analyzer

 git clone git://github.com/sawjlab/hcana.git

 (Code temporarily at github.com pending Jlab setup)

 cd hcana

 git submodule init ! Retrieves Hall A software

 git submodule update ! ‘’

 cd podd ! ‘’

 git checkout master ! ,,

 cd ..

 git branch ! Should say ‘* develop’

 source setup.csh ! Or setup.sh. Root must be installed

 make

Running hcana

• Make sure you are up to date

 git checkout develop ! Make sure on main dev. branch

 git pull ! Update with latest public code

 make

 cd examples

 wget https://userweb.jlab.org/~saw/software/daq04_50017.log.0.gz

 gunzip daq04_50017.log.0.gz

 ../hcana

 analyzer [0] .x hodtest.C ! Produces root tree

 analyzer [1] .x hitmaps.C ! Makes hists from root tree

Developing code

 git branch somethingunique ! Create your own branch

 git checkout somethingunique ! Move to your branch

 ! Code is in ‘src’ directory

 git add filename ! Start tracking a new file

 git commit -a ! ‘checkin’ new and modified files

 ! Do this often to track evolution of

 ! of code.

 ! Code not public until ‘push’ed to

 ! Public repository

 ! Ask saw for permission to upload/push

 ! (Brad S. working on JLab hosted git solution)

#real raddeg

raddeg=3.14159265/180

; hms/sosflags.param include spectrometer offsets

and options.

#include "PARAM/genflags.param"

#include "PARAM/hmsflags.param"

#include "PARAM/sosflags.param"

#include "PARAM/gdebug.param"

#include "PARAM/hdebug.param"

#include "PARAM/sdebug.param"

#include "PARAM/htracking.param"

#include "PARAM/stracking.param"

#include "PARAM/gtarget.param"

#include "PARAM/hdc_offsets.param"

#include "PARAM/hdc.pos"

Sample Parameter Files:

general.param

 hpathlength_central = 2500

; Z positions of hodoscopes

 hscin_1x_zpos = (89.14-11.31)

 hscin_1y_zpos = (108.83-11.31)

 hscin_2x_zpos = (310.13-11.31)

 hscin_2y_zpos = (329.82-11.31)

 hscin_1x_dzpos = 2.12

 hscin_1y_dzpos = 2.12

 hscin_2x_dzpos = 2.12

 hscin_2y_dzpos = 2.12

 hscin_1x_size = 8.0

 hscin_1y_size = 8.0

 hscin_2x_size = 8.0

 hscin_2y_size = 8.0

 hscin_1x_spacing = 7.5

 hscin_1y_spacing = 7.5

 hscin_2x_spacing = 7.5

Sample Parameter Files:

hhodo.pos

Hcana reads ENGINE parameter files

Hodoscope hit maps

Fortran ENGINE C++ hcana

Shower Counter hit maps

From Simon Zhamkochyan

HMS Shower counter ADC hit

map from Hall C++ analyzer.

Layers 1&2 – two tubes/bar

Layers 3&4 – four tubes/bar

Software working group meetings

• Semi-weekly (phone) meeting on Hall C 12 GeV software,

(Tuesdays, 1PM) chaired by Mark Jones.

• Subscribe to “hallcsw” mailing list for announcements. Next meeting

June 25.

• Recent meeting topics:

• Software review preparations, research management plan

• GIT(revision control system) tutorial

• Documentation of Shower Counter Fortran code

• Analysis workflow

• Skeleton Hall C++ analyzer

