J/\u03cf Analysis Update

Update on Presentation of 2/23/13

Luke Robison 11/16/15

Northwestern

Outline

- 1. Introduction & Motivation
- 2. Monte-Carlo Data Generation
- 3. Cuts on the Data
- 4. Preliminary Results

Motivation

- 1. Study J/ ψ production
- 2. Search for pentaquark production

Illustration of two and three gluon photoproduction of J/ψ

J/ψ Analysis

J/ ψ Signal: $\gamma p \rightarrow J/\psi p$ J/ $\psi \rightarrow e+e-$

Branching ratio to e⁺e⁻: 6% Cross section: ~0.1 nb near 10 GeV. Main Background: $\gamma p \rightarrow \pi^+ \pi^- p$

Cross section: ~14.5 μb (mostly due to ρ production).

Monte-Carlo Generation

 $J/\psi \rightarrow e^+e^-$ events:

 $\pi^+\pi^-$ events:

1. Generate <u>120k</u> J/ ψ events with a t-slope of 1, assuming the 2gluon photoproduction model.

2. Run this data through *hdgeant* and *mcsmear*.

3. Run the output through my JANA plugin and then *TSelector*.

1. Generate <u>>1 million</u> background events, courtesy of Sean.

2. Run this data through *hdgeant* and *mcsmear*.

3. Run the output through my JANA plugin and then *TSelector*.

Basic Selection Cuts

- 1. Both the J/ $\psi \rightarrow e^+e^-$ and $\pi^+\pi^-$ events are reconstructed in JANA, with the proton missing.
- 2. Various suggested cuts in JANA are made:
 -Maximum Photon RF to the correct beam bunch. (1.002 ns cut)
 -Maximum Extra Good Tracks (4).
- 3. A loose invariant missing mass cut is made in the TS elector 0.5 GeV < Squared Missing Mass < 2.2 GeV

TSelector Cuts- Missing Mass

Northwestern

TSelector Cuts- $\pi^+\pi^-$ Angles

TSelector Cuts- E/p

	E/p Cut	Purity	E/p Efficiency
Selected Cut	0	0.013	1
	0.5	0.396	0.741
	0.6	0.672	0.710
	0.65	0.776	0.683
	0.7	0.889	0.650
	0.75	0.938	0.610
	0.8	0.965	0.561
	0.85	>0.97	0.508

Choosing an E/p cut of >0.8 gives an overall efficiency of 6.5%.

E/p Distributions

dE/dx from e⁺e⁻ Events

e⁺e⁻ Invariant Mass

Mean: 3.09 GeV Sigma: 70 MeV

Overall Efficiency (>2.9 GeV): 6.5 %

Northwestern

Combined Invariant Mass

Future Plans

- -Re-do the analysis, but with the Proton reconstructed.
- -Compare the response of the FCAL and BCAL to electrons and pions between simulation and data.
- -Continue to add other useful cuts & plots (comparing reconstructed distributions to thrown ones, for example).
- -Investigate low efficiencies from JANA
- -Look into adding in tagger information
- -Continue working on TRD development