Tracking working group - charges

Tracking Working Group

- 1. Determine preliminary charged pion and proton reconstruction efficiencies as function of p, ϕ and θ in data and simulation with a point-to-point precision of at least 5%.
- 2. Measure systematics of invariant mass calibration as a function of ϕ and θ to a precision of at least 5 MeV.

3. Demonstrate agreement of charged pion and proton reconstruction efficiency and invariant mass resolution between data and simulation as a function of p, ϕ and θ to within 5%.

- The only work so far done by W&M: Amy Schertz and Justin Stevens for charged pions
- Simon is studying proton efficiency with MC only
- Some input from Bethe-Heitler and J/ψ efficiency studies but it is not only "tracking efficiency"

Studies with controlled sample of charged pions from ω decay (W&M group)

- $\omega \to (\pi^{\pm})\pi^{\mp}\pi^0$
- How to define cuts on the tracking quality, to be similar to the one of the tracks surviving certain reaction filter

Efficiency Ratios for $P(\chi^2)$ Cuts

Studies with controlled sample of charged pions from ω decay (W&M group)

The method doesn't work when applying cut on track resolution, due to bad reconstruction of missing momentum at big ω angles

Bethe-Heitler and J/ ψ efficiencies

- Proton efficiency critical in comparing BH vs J/ψ
- Can use BH at high M(e⁺e⁻) but very low statistics
- Can we use pion tracking efficiency instead? (Simon's studies)

Tracking working group

Tracking [edit]

Status	Time Estimate	Supervisor	Worker	Description	Reference Materials
In progress	6 months	Justin Stevens	Amy Schertz	Determine $\pi^{+/-}$ efficiency as function of momentum and theta	[1] &
	3 months			Determine K ^{+/-} efficiency as function of momentum and theta	
	6 months	Sean Dobbs	Shankar Adhikari	Determine proton efficiency as function of momentum and theta	
	6 months	Sean Dobbs	Nilanga Wickramaarachchi	Determine K _S efficiency of function of momentum and theta	
	6 months			Determine Lambda ⁰ efficiency of function of momentum and theta	
In Progress	3 months	Sean Dobbs	Gabriel Rodriguez	Determine K_S mass and resolution as function of momentum and theta	
	3 months			Determine Lambda ⁰ mass and resolution as function as functions of momentum and theta	

Tracking - conclusions

- The only work done so far by W&M promising results with charged pions (data/MC agreement within 5%)
- Difficulties with protons in covering forward angles
- Deeper MC analysis needed to understand the tracking for pions and protons
- Need studies with other reactions and more people actively working