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We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations

on several lattice volumes are performed with a range of light quark masses corresponding to pion masses

down to �400 MeV. The distillation method enables us to evaluate the required disconnected contribu-

tions with high statistical precision for a large number of meson interpolating fields. We find relatively

little mixing between 1ffiffi
2
p ðu �uþ d �dÞ and s�s in most JPC channels; one notable exception is the pseudoscalar

sector where the approximate SUð3ÞF octet, singlet structure of the �, �0 is reproduced. We extract exotic

JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet q �q pair,

along with nonexotic hybrid mesons embedded in a q �q-like spectrum.
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I. INTRODUCTION

Isoscalar mesons, those which have all flavor quantum
numbers equal to zero, offer a rich probe of the nonpertur-
bative physics of QCD. Quarks of all flavors can in prin-
ciple contribute, as can bound configurations constructed
entirely from glue, and since quark-antiquark pairs of no
net flavor can annihilate, the quark and glue sectors can
mix dynamically. By studying the spectrum and hidden-
flavor content of isoscalar mesons we can infer a phenome-
nology of annihilation dynamics within QCD.

Experimentally there appears to be significant regularity
in the excited meson spectrum, with each isovector meson
of a given JPC typically partnered by an isoscalar meson of
roughly the same mass, with both states dominantly decay-
ing into final states not featuring strange hadrons. At a
slightly larger mass, usually roughly 200MeV higher, there
is another isoscalar meson dominantly decaying into final
states featuring strangeness. The most famous example of
this is the �, !, � system where the admixture of js�si into
the dominantly 1ffiffi

2
p ðju �ui þ jd �diÞ!meson is estimated to be

less than 1%. Other reasonably well-determined examples
include the tensor mesons a2ð1320Þ, f2ð1270Þ, f02ð1525Þ,
and the �3ð1690Þ, !3ð1670Þ, �3ð1850Þ system [1].

There are only a few known exceptions to this pattern of
‘‘ideal mass mixing.’’ The low-lying pseudoscalar sector,
�, �, �0, is the best studied, with the conventional inter-
pretation being that the � and �0 are mixed such that they
are close to the octet 1ffiffi

6
p ðju �ui þ jd �di � 2js�siÞ and singlet

1ffiffi
3
p ðju �ui þ jd �di þ js�siÞ representations of SUð3ÞF, respec-
tively. The lightest isoscalar 1þþ mesons, f1ð1285Þ,

f1ð1420Þ, appear to be mixed somewhere between ideal
in mass and ideal in SUð3ÞF—their relative rates of decay
into �� and �� suggest there may be as much as �15%
hidden strange in the lighter state [1,2].
The scalar sector (0þþ) does not admit a simple

description—while some features are now largely agreed
upon, such as the existence of a broad � resonance (see
e.g. [3]) and narrow f0ð980Þ, a0ð980Þ resonances near the
K �K threshold, the exact number of scalar resonances
between 1 and 2 GeV, and their flavor composition, is
not a settled question [1,4–8].
The level of theoretical understanding of isoscalar

mesons is generally much lower than for the isovector
mesons. The gross features of the excited isovector spec-
trum can be reasonably well described by proposing that
there exist effective heavy ‘‘constituent quark’’ degrees of
freedom, from which we can build mesons as quark-
antiquark pairs with relative orbital angular momentum.
Ideal mass mixed isoscalar mesons, 1ffiffi

2
p ðu �uþ d �dÞ, s�s, can

then be described if we state, by fiat, that annihilation
contributions are negligible, ensuring no flavor mixing
and no splitting between the lighter isoscalar and the iso-
vector state. The hidden-strange states are then heavier
solely by virtue of the strange constituent quark being
heavier. With this approach, there is no natural way to
explain the exceptions to ideal mass mixing, such as the
1þþ sector, or the nontrivial structure of the scalar sector.
The constituent quark picture fails to describe the

low-lying pseudoscalar sector, but here we have a solid
phenomenology based upon them being pseudo-Goldstone
bosons of spontaneously broken chiral symmetry. The
approximate SUð3Þ axial-vector symmetry that is broken
by the vacuum gives rise to an octet of light pseudoscalar
mesons that includes the pions, kaons and the �. The*dudek@jlab.org
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remaining approximate Uð1Þ axial-vector symmetry,
whose breaking we might expect to give us a light singlet
pseudoscalar, is in fact not a symmetry at the quantum
level, being broken by an anomalous divergence which
receives contributions from topologically nontrivial
gauge-field configurations [9,10]. This provides a mecha-
nism by which the dominantly singlet �0 can be heavier
than the dominantly octet � as is observed experimentally.

States of pure glue, ‘‘glueballs,’’ are well studied using
lattice methods applied to the quarkless theory of SUð3Þ
color Yang-Mills (e.g. [11]). A clear spectrum of color-
singlet bound states is predicted, with the lightest state
being a scalar which may have a mass under 2 GeV.
Other relatively low-lying states include a tensor and a
pseudoscalar, before the spectrum becomes dense at high
energies. Experimentally it is not clear that there is a single
scalar resonance that can be identified with a glueball,
and it remains a longstanding problem to find a clear
observable filter that marks out a state as having a glueball
structure rather than q �q [8]. Determining how glueballs
enter into the spectrum in full QCD with dynamical quark
fields demands a complete calculation extracting the entire
low-energy spectrum of color-singlet states, something
which has not been seriously attempted to date.

In short, outside of the low-energy pseudoscalar sector,
where (spontaneously broken) symmetries of QCD con-
strain the possibilities, little is known about isoscalar
mesons from first principles in QCD.

Lattice QCD enables us to determine the excited spec-
trum of QCD in a controlled approximation. Excited state
energies are computed from the exponential decay of
Euclidean time correlators featuring composite QCD op-
erators with hadron quantum numbers. The gauge coupling
(and hence the lattice spacing), lattice volume, and the
quark masses are inputs to the calculations that can be
systematically varied to approach the limit in which physi-
cal QCD is duplicated. In this limit, direct comparison with
experiment can be made.

Recently significant progress has been made in ap-
proaching this limit in determinations of the lightest bary-
ons and isovector mesons (e.g. [12]). Away from this limit,
with light quarks somewhat heavier than physical, detailed
spectra of excited isovector mesons and other excited non-
isoscalar hadrons have been obtained [13–20]. Extracting
the isoscalar meson spectrum remains a challenging
prospect—distinguishing isoscalar from isovector correla-
tors requires the evaluation of disconnected Wick contrac-
tions, and it has proven difficult to obtain signals of high
statistical precision for these (but see recent progress,
restricted to the lightest pseudoscalars, in [21–23]).
Furthermore in order to reliably extract a spectrum of
excited isoscalar states, one should compute a large num-
ber of isoscalar correlators using a range of quark-gluon
composite operators to interpolate states. In this case we
demand a method that provides a computationally efficient

means to compute quark propagation from arbitrarily
complicated operators. In this work we will take advantage
of a number of useful features of the distillation quark
smearing framework [24] to address the difficulties posed
above. We find that it is possible to obtain an excited state
isoscalar spectrum of high statistical quality with a level
of computational effort that can be satisfied using the
capability provided by graphics processing units.
In this paper, building on our initial exploratory efforts

in [25], we will present isoscalar meson spectra obtained
for a range of light quark masses on several lattice vol-
umes. We explore systematics observed in the spectrum,
compare with the isovector spectrum and extract informa-
tion about the hidden light/strange composition of isoscalar
mesons.
Among the interesting features present in the isovector

meson spectrum reported on in [13,14,26] are a set of
exotic JPC states, that is, states whose quantum numbers
cannot be described by a quark-antiquark pair with orbital
angular momentum, and which thus lie outside the other-
wise rather successful constituent-quark picture. These
additional states were found to have strong overlap onto
operators featuring a chromomagnetic gluonic construc-
tion coupled to the quark fields, as were a number of
otherwise unexpected states with nonexotic JPC. An ex-
planation was proposed that these states are hybridmesons,
in which a quark-antiquark pair is coupled to an excited
gluonic field, a sector of QCD long expected to exist
[27–32]. Experimentally there are hints that at least one
such state with 1�þ may be present (for a critical review
see [33]). It is important to also determine if isoscalar
partners of these isovector hybrid mesons exist, and in
what mass region—in this paper we will report on a clear
identification of such states.
Because of the complexity of the scalar (0þþ) sector,

which experimentally contains a low-lying broad reso-
nance and where a low-lying glueball is expected, we defer
a detailed investigation of scalar mesons to future work.
The remainder of the manuscript is arranged as follows:

Section II describes how one computes isoscalar correla-
tion functions in lattice QCD, describes the distillation
construction, presents some selected results showing the
signal quality obtained in explicit computation, and dis-
cusses correlation functions featuring glueball-like opera-
tors. Section III describes the extraction of the excited state
spectrum from a matrix of correlation functions and the
determination of the hidden flavor mixing in isoscalar
states. The method is demonstrated with results from a
single symmetry sector before a discussion of the caveats
which should be applied to an interpretation of the ex-
tracted spectrum. Section IV presents the spectra deter-
mined for a range of quark masses and lattice volumes.
Section V contains a phenomenological description of the
observed spectra in terms of constituent q �q constructions
supplemented with hybrid mesons. Finally, in Sec. VI, we

DUDEK et al. PHYSICAL REVIEW D 88, 094505 (2013)

094505-2



conclude and present possible directions for future calcu-
lations to address the physics of isoscalar mesons.

II. LATTICE TECHNOLOGY

The basic object we will use to extract the spectrum of
isoscalar meson eigenstates of QCD is a Euclidean corre-
lation function:

Cijðt0; tÞ ¼ h0jOiðt0ÞOyj ðtÞj0i; (1)

where the interpolating fieldsOyi are gauge-invariant com-
binations of the basic quark and gluon fields of QCD,
constructed to transform with I ¼ 0 under rotations in
quark flavor space. The complete set of discrete eigen-
states, jni, with the quantum numbers of Oi;j appears in

the spectral decomposition

Cijðt0; tÞ ¼
X
n

1

2En

h0jOið0ÞjnihnjOyj ð0Þj0ie�Enðt0�tÞ: (2)

The simplest isoscalar meson operators are of quark-
bilinear structure, �c�c , and with two light-quark flavors,
u, d (assumed here to be degenerate, so we have an exact
isospin symmetry), and one heavier flavor, s, a possible
flavor basis having I ¼ 0 is given by

O‘ ¼ 1ffiffiffi
2
p ð �u�uþ �d�dÞ; Os ¼ �s�s: (3)

After functional integration of the quark fields, correlation
functions can be expressed in terms of connected compo-
nents C, diagonal in quark flavor, and disconnected com-
ponents D, which can mix flavor. The Wick contractions
corresponding to C, D are shown schematically in Fig. 1.

The four possible correlation functions using the flavor

basis in Eq. (3), Cq0qðt0; tÞ ¼ h0jOq0 ðt0ÞOqyðtÞj0i, with
q ¼ ‘, s can be expressed as a matrix:

C‘‘ C‘s

Cs‘ Css

 !
¼ �C‘‘ þ 2D‘‘

ffiffiffi
2
p

D‘sffiffiffi
2
p

Ds‘ �Css þDss

 !
: (4)

The off-diagonal elements of this matrix allow the eigen-
states of the theory to be admixtures of light and strange
quarks, with the degree of mixing being determined dy-
namically. Note that the connected contribution �C‘‘ is
precisely the contraction required to compute the isovector
correlation function corresponding to any of the flavor
constructions, �u�d, �d�u, 1ffiffi

2
p ð �u�u� �d�dÞ, and thus, even

without strange quarks, the inclusion of the disconnected
contributionD‘‘ means the isoscalar spectrum need not be
the same as the isovector spectrum.

An alternative basis, corresponding to a simple orthogo-
nal transformation of Eq. (3), is

O1 ¼ 1ffiffiffi
3
p ð �u�uþ �d�dþ �s�sÞ;

O8 ¼ 1ffiffiffi
6
p ð �u�uþ �d�d� 2�s�sÞ:

(5)

where the labels 1, 8 allude to the fact that these combi-
nations are singlet and octet irreducible representations,
respectively, of an SUð3Þ flavor symmetry. This basis has
the property that in the limit that the u, d and s quarks all
have the same mass, only the correlator C1;1 has a discon-
nected contribution and C1;8 is zero.
We compute correlation functions using distillation

[24]—within this framework the quark fields on a time
slice entering in the interpolating functions are smeared
over space by an operator h, whose purpose is to enhance
the low momentum quark and gluon modes that dominate
low mass hadrons. The operator h, acting in color and
position space, is constructed as

hðtÞ ¼ XN
k¼1

�kðtÞ�kyðtÞ; (6)

where �kðtÞ are the lowest N eigenvectors of the gauge-
covariant Laplacian evaluated on the background of the
spatial gauge fields of time slice t. Quark bilinear operators
can be constructed in distillation as

�ch�hc ; (7)

and the outer-product definition of h, Eq. (6), allows a
factorization of the correlation functions into products of
objects describing quark propagation and objects encoding
the particular operator constructions used. The propagation
objects, known as perambulators,

�ij	
ðt0; tÞ ¼ �iyðt0Þ½M�1�	
ðt0; tÞ�jðtÞ; (8)

are obtained by inverting the Dirac matrixM, whose Dirac
spin indices are here exposed, on a finite number of
sources, �jðtÞ. The connected and disconnected contribu-
tions to isoscalar correlation functions then take the form

FIG. 1 (color online). Quark propagation for correlation func-
tions built using the operator basis in Eq. (3). Each line repre-
sents a quark propagator for either a light (black) or a strange
(green) quark.
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Cq
0q

AB ðt0; tÞ ¼ �qq0 Tr½�Aðt0Þ�qðt0; tÞ�BðtÞ�qðt; t0Þ�;
Dq0q

AB ðt0; tÞ ¼ Tr½�Aðt0Þ�q0 ðt0; t0Þ�Tr½�BðtÞ�qðt; tÞ�;
(9)

where contracted indices have been suppressed and
where the choice of operator construction is encoded in

ð�AÞij	
ðtÞ¼�iyðtÞ�A
	
ðtÞ�jðtÞ. There is considerable flexi-

bility allowed in the choice of �—in this work we will use
some number of gauge-covariant derivatives and a projec-
tion over position space into zero momentum. To the extent
that the construction � is well supported in the finite basis
of distillation vectors, f�i¼1...Ng, distillation is a very effi-
cient means to compute the correlation functions above
since the traces are over the set of N distillation vectors
which is much smaller than the full lattice space.

We can obtain a determination of the connected contri-
bution Cðt; t0Þ, for all values of t, using only perambulators
from a single time source at t0. On the other hand, in order
to study the t dependence ofDðt; t0Þ, Eq. (9) indicates that
we require perambulators from sources at every value of t.
Operationally, since we compute all such perambulators,
we opt to maximize signal over noise by averaging over
many time sources:

CqqðtÞ � 1

NC

XNC

ft0g
Cqqðtþ t0; t0Þ;

Dq0qðtÞ � 1

Nt

XNt

ft0g
Dq0qðtþ t0; t0Þ:

The disconnected piece is averaged over all Nt ¼ 128 time
sources, while the connected piece needs far less averaging
to achieve a comparable level of statistical fluctuation—the
number of equally spaced sources used, NC, is given in
Table I.

A powerful way to extract the spectrum of eigenstates
in Eq. (2) is to utilize a matrix of correlation functions,
constructed from a basis of operators fOi¼1...Nops

g all having
the same conserved quantum numbers. The matrix can be
‘‘diagonalized’’ using a variational approach [34–36] to be

described in the next section. Our choice of operator basis
is described in detail in [13,14]—the fermion bilinear
operators are of structure

�ch�D
$
. . .D
$
hc ; (10)

with up to three gauge-covariant derivatives. The Dirac
gamma matrix structures are listed in Table II. The
Cartesian vectorlike gamma matrices and derivatives

D
$ ¼ D

 �D
!

are expressed in a circular basis so that they
transform as spin J ¼ 1. Using standard SOð3Þ Clebsch-
Gordan coefficients, the Dirac gamma matrix structures are
coupled to the derivative structures to produce operators
OJ;M, where M is the z component of a spin-J operator.
The choice of � and the derivative structure determine the
parity P and charge conjugation C to give an operator with
overall continuum quantum numbers JPC at zero momen-
tum. The notation used follows that of Ref. [14]: an opera-

tor ð��D½N�JD
ÞJ contains a gamma matrix � using the

naming scheme defined in Table II and N derivatives
coupled to spin JD, and overall coupled to spin J.
Reflecting the reduced cubic symmetry of the lattice, the

continuum operators OJ;M are subduced into five irreduc-
ible representations (irreps): A1, T1, T2, E and A2 [14,37],

O½J��;� ¼
X
M

S�;�
J;MO

J;M; (11)

to form operators that transform in the �th row of a lattice

irrep �. The S�;�
J;M are subduction matrices that are pre-

sented in Appendix A of Ref. [14]. We average the final
correlation functions over each row, �, of the irrep �.

Finally, for each choice of � � ð��D½N�JD
ÞJ we con-

struct two operators according to the flavor basis defined
in Eq. (3).
In this work, we evaluate correlation functions on a set

of dynamical anisotropic lattices which have a finer spac-
ing in the temporal direction than the spatial directions.
Improved gauge and stout-link smeared clover fermion
actions are used, with two mass-degenerate light dynami-
cal quarks and one strange dynamical quark, of masses m‘

and ms, respectively. Details of the formulation of the
actions can be found in Refs. [38,39]. The lattices have a
spatial lattice spacing as � 0:12 fm with a temporal lattice
spacing approximately 3.5 times smaller, corresponding to
a temporal scale a�1t � 5:6 GeV. The particular lattices
used are presented in Table I along with parameters rele-
vant for the correlator construction. In the remainder of the
paper we will quote determined hadron mass values via a

TABLE I. Lattice gauge field parameters. Also shown are the
number of time sources averaged over, NC, in the computation of
connected correlators C and the number of distillation vectors
Nvecs.

atm‘
atms

m�=MeV mK

m�
ðLs=asÞ3 � ðLt=atÞ Ncfgs NC Nvecs

�0:0743
�0:0743 702 1

163 � 128 535 32 64

203 � 128 505 8 128

�0:0808
�0:0743 524 1.15 163 � 128 500 32 64

�0:0840
�0:0743 391 1.40

163 � 128 479 32 64

203 � 128 600 8 128

243 � 128 553 8 162

TABLE II. Gamma matrix naming scheme.

a0 � �2 b0 � �2 a1 b1

� 1 �5 �0�5 �0 �i �0�i �5�i �0�5�i
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ratio to the � baryon mass as determined on the same

lattice, scaled by the physical� baryon mass: atmH

atm�
�mphys

� .

Observables are computed on gauge-field configurations
separated by 20 trajectories after 1000 trajectories have
been used for thermalization. It is found that the integrated
autocorrelation time is small for the observables
investigated in this paper. After binning the correlation
functions over ten separate measurements, no discernible
change is found in the subsequent analysis of the spectrum.

A. Example correlation functions

The connected and disconnected components of a set of
illustrative correlation functions are shown in Figs. 2–6,
computed on the 243 � 128 lattice with m� ¼ 391 MeV.
The plots show the timedependence,weighted byemXt, where
mX is the mass of the lightest isovector meson with the
appropriate quantum numbers (as determined through varia-
tional analysis of the connected light-quark correlators).
Also shown stacked underneath the main plot are the time

slice correlations1 in the data relative to a reference time
slice, t=at ¼ 15. Data with no time slice correlations would
have this variable being 1 at t=at ¼ 15 and zero elsewhere.
Figure 2 shows correlator components for the simplest

A�þ1 operator, � ¼ �5. We observe that the disconnected

contributions are significant, particularly D‘‘ and the
off-diagonal flavor term D‘s. Compare this with Fig. 4,
which shows � ¼ �i, where we observe the disconnected
contributions to be orders of magnitude smaller than the
connected. At large times we expect the isoscalar A�þ1
correlators to be dominated by the � and �0 mesons

-2

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30

-1
 0
 1

FIG. 3 (color online). As in Fig. 2, for the operator

� ¼ ðb1 �D½1�J¼1ÞJ¼0A1
in the irrep A�þ1 .
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FIG. 2 (color online). Connected and disconnected contribu-
tions to A�þ1 correlation functions in Eq. (4) for the operator

� ¼ �5. Stacked graphs under the main plot shows the time slice
correlation with a reference time slice t=at ¼ 15.
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FIG. 4 (color online). As in Fig. 2, for the operator � ¼ �i in
the irrep T��1 .
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FIG. 5 (color online). As in Fig. 2, for the operator

� ¼ ð��D½2�J¼1ÞJ¼1T1
in the irrep T��1 .

1We compute the correlation Ĉðt; t0Þ via the data covariance:

C ðt; t0Þ ¼ 1

NcfgsðNcfgs � 1Þ
XNcfgs

i¼1
ðCiðtÞ � CðtÞÞðCiðt0Þ � Cðt0ÞÞ;

as

Ĉðt; t0Þ ¼ Cðt; t0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðt; tÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðt0; t0Þp :
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which empirically are significantly heavier than their
isovector cousin, the pion, and strongly admixed in the
1ffiffi
2
p ðju �ui þ jd �diÞ, js�si basis. Conversely the large time

behavior of the isoscalar T��1 correlators will be governed

by the ! and � mesons which are believed to be almost
pure 1ffiffi

2
p ðju �ui þ jd �diÞ, js�si, respectively, and where the! is

very similar in mass to the �. The behavior shown in
Figs. 2 and 4 is seen to be qualitatively in agreement
with these expectations. More quantitative statements
will follow from variational analysis of a matrix of corre-
lation functions and will be presented in the next section.

In Fig. 3 we show the set of correlation function com-

ponents for another A�þ1 operator, ðb1 �D½1�J¼1ÞJ¼0A1
. We see

that the connected component again relaxes to a mass scale
compatible with m� at large times, as one would expect,
and that at large times the relative size of the various
connected and disconnected components is similar to
that observed in Fig. 2, indicating that the same low-lying
mesons are dominating the correlation functions. However,
we can clearly see that the earlier time behavior is quite
different to that observed in Fig. 2, owing to the different
relative weighting of excited states in Eq. (2) for this
operator compared with �5. It is this variation with differ-
ing operators that we will take advantage of to determine
excited state contributions in variational analysis.

In Fig. 2 the data are not seen to fluctuate time slice to
time slice to the degree one would expect on the basis of
the error bars. This suggests that the data may be correlated
in time, and indeed explicit evaluation of the correlation
shows this to be the case (see the stacked graphs beneath
the main plot). All fitting of time dependences in this paper
will be done using correlated 2 fits.2 Note that the high

degree of correlation is not a general feature of pseudosca-

lar operators—the correlators for � ¼ ðb1 �D½1�J¼1ÞJ¼0A1

plotted in Fig. 3 show much less correlation.
In previous publications [14,26] we have explored the

role that hybrids play in the meson spectrum. We found
that nonexotic JPC hybrids embedded in the conventional
meson spectrum can be identified by their large overlap
onto operators featuring a chromomagnetic construction

(e.g. D½2�J¼1). In order to explore this phenomenology in the

isoscalar sector we need good determinations of correlators
featuring such operators. In Fig. 5 we show connected
and disconnected contributions for the T��1 operator

� ¼ ð��D½2�J¼1ÞJ¼1. We observe signals with rather high

statistical quality, where, as one would expect, the con-
nected term does eventually relax to the ground state �.
Note that the disconnected contributions, though small,
are nonzero at intermediate times which may suggest that
excited isoscalar 1�� states having good overlap onto this
operator might differ somewhat from the corresponding
isovector states.
Finally we examine the form of exotic quantum num-

bered correlators, which we expect to contain exotic hybrid
mesons, with an example being T�þ1 through the operator

� ¼ ð��D½2�J¼1ÞJ¼1. While the signals are observed to be

somewhat noisier than the previous cases, there is clearly
enough data (which we note is not strongly time slice
correlated) to attempt a spectrum extraction.

B. Glueball operators

It is possible to construct isoscalar operators within
QCD without explicitly including quark fields—suitable
combinations of gauge-link fields can be built which trans-
form irreducibly, and we might assume that such construc-
tions would have strong overlap onto states in the spectrum
which have glueball structure. Unlike in the quarkless
SUð3Þ color Yang-Mills studies (e.g. [11]), we cannot
study the spectrum of glueballs in isolation since there
are generically q �q isoscalar constructions which have
the same quantum numbers and which can mix with the
glueballs to give the physical eigenstates. As such the
appropriate approach is to supplement the fermion bilinear
operators described earlier with a set of glueball operators
and explore cross correlators.
Following a similar construction as for the fermion bi-

linears in Eq. (10), we choose to define glueball operators
using the distillation space vectors �ðtÞ defined in Eq. (6)
on a time slice t as

GðtÞ ¼ XN
k¼1

�kyðtÞD$ . . .D
$
�kðtÞ (12)

with up to three gauge-covariant derivatives, to give an
operator of definite JPC at zero momentum. As in the
fermion bilinears, the glueball operators are subduced
into irreducible representations of the cubic group. The
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FIG. 6 (color online). As in Fig. 2, for the operator

� ¼ ð��D½2�J¼1ÞJ¼1T1
in the irrep T�þ1 .

2By correlated fits to CðtÞ, we mean those which use the
inverse data covariance C�1:

2ðfaigÞ ¼
X
t;t0
½CðtÞ � fðt; faigÞ�C�1ðt; t0Þ½Cðt0Þ � fðt0; faigÞ�:
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notable difference is that while the fermion bilinear opera-
tors defined in Eq. (10) lead to matrices in distillation space
which multiply quark propagation perambulators, the glue-
ball operators in Eq. (12) are a trace in distillation space.
Thus, the contribution of glueball operators to correlation
functions is only through product of traces, such as

D‘gðt0; tÞ ¼ Tr½�ðt0Þ�‘ðt0; t0Þ�GðtÞ;
Dggðt0; tÞ ¼ Gðt0ÞGðtÞ;

which is similar to the products of traces of quark bilinear
operators occurring in the disconnected parts of Fig. 1.

In Fig. 7 we show a sample set of correlation functions
in the irrep Eþþ (which should be dominated by 2þþ

states) using the operators ð��D½1�J¼1ÞJ¼2, which resemble

a q �q3P2 construction in the nonrelativistic limit, for both
light (‘) and strange (s) quark flavors, and the glueball

operator D½2�J¼2 (g). While there are clearly nonzero signals

connecting the q �q and glue sectors at early times, these
signals have degraded into noise by time slice 15. These
glueball correlation functions can be included in the varia-
tional analysis; however, the quality of the signals is not
sufficiently precise to have a discernible impact upon the
levels in the variationally determined spectrum. Rather
stronger signals are observed in the Aþþ1 irrep, which we
do not report upon in this paper—we require inclusion of
multiparticle operator constructions before accurate deter-
mination of the scalar spectrum is feasible. For the results
presented in this paper, we will not include the glueball
operators in the operator basis.

III. EXTRACTION OF THE SPECTRUM

Our approach to extracting the spectrum requires com-
putation of matrices of isoscalar correlation functions us-
ing the large basis of operators sketched in the previous
section. For a given irrep of the cubic lattice symmetry we
include operators subduced from J � 4, with each operator
appearing twice, once with the ‘ flavor construction and
once with s, as defined in Eq. (3).
The matrix of correlation functions is analyzed using a

variational approach [34–36] which involves solving the
generalized eigenvalue problem

CðtÞvn ¼ �nðtÞCðt0Þvn; (13)

for eigenvalues, or ‘‘principal correlators,’’ related to the

energy spectrum �nðtÞ � e�Enðt�t0Þ and eigenvectors vn,
from which we can determine the spectral overlaps

hnjOyi ð0Þj0i. For details of our implementation of this
method see Refs. [14,40].
We have previously analyzed isovector correlation func-

tions using the same basis of subduced fermion bilinear
operators [13,14], where we found that each state in the
observed spectrum had strong overlap only onto operators
subduced from a single J value. Furthermore, near-
degenerate states were observed distributed across lattice
irreps in precisely the manner expected for the distribution
of Jz components of a spin-J state. In this study of the
isoscalar spectrum we observe the same separation of
states in spin, and we are able to assign a definite J to
each state using the methods described in [14].

0

 0  5  10  15  20  25  30  0  5  10  15  20  25  30
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FIG. 7 (color online). A selection of Eþþ correlation functions with operators � ¼ ð��D½1�J¼1ÞJ¼2 for both light (‘) and strange (s)

quark flavors, and the glueball operator D½2�J¼2 with the symbol (g), evaluated on the m� ¼ 391 MeV, 243 � 128 lattice. Plotted is

emEt � CðtÞ, where mE is the lowest mass state in the isoscalar Eþþ sector.
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Determination of the values of the spectral overlaps for
‘‘hidden light,’’ Zn

‘ ¼ hnjO‘yð0Þj0i, and ‘‘hidden strange,’’
Zn
s ¼ hnjOsyð0Þj0i, allows us to investigate the flavor

structure of the isoscalar meson spectrum. A particularly
simple case follows if we assume two nearby states in the
spectrum are orthogonal admixtures of two basis states
of flavor structure j‘i � 1ffiffi

2
p ðju �ui þ jd �diÞ and jsi � js�si.

Under this hypothesis we can write, for the two eigenstates
jai, jbi, where ma <mb,

jai
jbi

 !
¼ cos	 � sin	

sin	 cos	

 ! j‘i
jsi

 !
; (14)

and assuming that

h‘jO‘yð0Þj0i ¼ Z‘; hsjO‘yð0Þj0i ¼ 0;

h‘jOsyð0Þj0i ¼ 0; hsjOsyð0Þj0i ¼ Zs;

we can determine the mixing angle	 from the combination

tan	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Zb

‘Z
a
s

Za
‘Z

b
s

s
: (15)

We can actually get one determination of 	 for each opera-
tor construction �, and we expect the determinations to
agree since the dependence on Z‘, Zs, which will vary
operator to operator, has canceled in the particular ratio
formed.

A. Variational analysis of Tþþ
1

As an example of the procedure outlined above, we
present here the result of variational analysis of the Tþþ1

correlator matrix on the m� ¼ 391 MeV lattice of volume
243 � 128. In this case we used 18 operators subduced
from J ¼ 1 (the same nine operators in each of ‘ and s
flavor constructions), two J ¼ 3 operators and two J ¼ 4
operators, leading to a matrix of size 22� 22. Figure 8
shows the resulting lowest eight principal correlators for
the case t0=at ¼ 5 and the fits to the time dependence
which yield estimates of the mass spectrum. Note that
the spectrum shows near-degenerate states which are being
cleanly extracted—this is possible because of the orthogo-
nality inherent in the variational method.

Figure 9 shows the relative size of overlaps hnjOð‘;sÞyi j0i
for these lowest eight states. Clearly we can identify the
lowest four states as being J ¼ 1, the next two as J ¼ 3
and the next two as J ¼ 4. It is also clear that the J ¼ 1
eigenstates are not diagonal in the flavor space, with each
being an admixture of j‘i and jsi, while the J ¼ 3 states do
appear to be diagonal in this flavor space.

Motivated by the relative similarity in mass of the states
jn ¼ 0i and jn ¼ 1i and the similarity between the histo-
grams in Fig. 9 with ‘$ s as ðn ¼ 0Þ $ ðn ¼ 1Þ, we will
proceed with the hypothesis that these two states are simple
admixtures of j‘i and jsi basis states as described earlier.

In our practical solution of Eq. (13), we solve indepen-
dently on each time slice, meaning that we determine
vn
i ðtÞ—these should be constants in t for t > t0 if we are

correctly describing the spectrum of states contributing to
CijðtÞ. A simple linear transformation applied to vn

i ðtÞ
yields the overlap factors Zn

i ðtÞ which should also be

constant. The histograms in Fig. 9 correspond to the results
of constant fits to Zn

i ðtÞ. We can obtain the angle 	 in
Eq. (15) as a function of t using the Zn

i ðtÞ and it should also
be constant, as it is seen to be in Fig. 10 for the lowest two
states jn ¼ 0i, jn ¼ 1i. As we can see, the determined
angle is consistent for all the J ¼ 1 subduced operators
used in the basis, and a constant fit to all the data yields our
best estimate of 	 ¼ 27ð2Þ�.

B. Interpretation of the spectrum

The extracted isoscalar spectrum across irreps shows the
same sort of systematics in mass degeneracy and spectral
overlaps that we observed in the isovector spectrum ex-
tracted using the same fermion bilinear operator construc-
tions [14]. In particular the distribution of states across
irreps is compatible with subduction of ‘‘single-hadron’’
states of definite J. This separation of states according to
continuum spin suggests that mesons which fit within the
lattice volume are not resolving the cubic symmetry of the
fine lattice grid [41].
But this simple pattern of states is too simple and

indicates that in these calculations we are not resolving
the complete spectrum of eigenstates of QCD in a finite
cubic volume.
Within a finite cubic volume, there should be a discrete

spectrum of multihadron states, which, if hadrons did
not interact, would lie at predictable energies. For
example, there would be a spectrum of two-hadron states,

atEAB¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðatmAÞ2þn2Að 2�

�Ls=as
Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðatmBÞ2þn2Bð 2�

�Ls=as
Þ2

q
,

where n2A, n
2
B are integers, related to the momenta of the

hadrons, A, B, with allowed values which depend upon
the irrep under consideration. This spectrum of states has
a strong volume dependence and a distribution across
irreps that is quite different to the subduction of a
single hadron of spin J [42].
In fact, the true eigenstates will be volume-dependent

admixtures of basis states with good overlap onto single-
hadron operators and multihadron states. An explicit ex-
ample can be seen in Ref. [43]. Figure 1 therein presents
the isovector T��1 spectrum in finite volume extracted from

variational analysis using firstly just fermion bilinear op-
erators, and secondly using in addition a set of operators
which resemble a pair of pions with relative momentum. In
the latter case there are clearly extra states present which
strongly resemble pairs of pions, but also the lowest-lying
state that we identify with the � (when computing with
only single-hadron operators) becomes two states which lie
within an energy region corresponding to the hadronic
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width of the � resonance. Analysis of these levels using the
Lüscher technique [44] allows us to resolve the �� scat-
tering amplitude and identify a rapidly rising phase shift
that we associate with the � resonance. We argue that the
presence of a single low-lying level when only fermion
bilinears are used suggests the existence of a single low-
lying narrow meson, as confirmed in the more complete
analysis.

Based upon the more careful analysis of the � described
above we suggest that the spectra presented herein for the
isoscalar meson spectrum are likely a reasonable guide to
the resonant state content of the infinite-volume theory at
these pion masses. There may be broad structures that we

are missing, and the ‘‘masses’’ extracted for unstable states
should not be considered precision estimates but can
probably be assumed to lie somewhere within the hadronic
width of the meson. Ultimately extraction of the full reso-
nant content of the excited meson spectrum will require
more sophisticated calculations including relevant multi-
mesonlike operator constructions.
In the results presented in the next section, we will

exclude any consideration of the 0þþ sector which has a
notoriously complicated phenomenology—experimentally
it features a large number of low-lying resonances on top of
a significant broad structure due to the � resonance. We
suspect that understanding this channel will demand the
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FIG. 8 (color online). Lowest eight ‘‘principal correlators’’ of the Tþþ1 correlation matrix at m� ¼ 391 MeV on the 243 � 128
lattice. Plotted is �nðtÞ � emnðt�t0Þ with t0=at ¼ 5, and the fits to the data using the form �nðtÞ ¼ ð1� AnÞe�mnðt�t0Þ þ Ane

�m0nðt�t0Þ with
An 	 1 and m0n 
 mn. Light gray points are not used in the fit.
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kind of sophisticated calculation suggested above in
which meson-meson operators for a set of channels
ð��;K �K;�� . . .Þ are included.

Before we embark upon a presentation of the large set of
results obtained, we remind the reader that in these calcu-
lations isospin is an exact symmetry and electromagnetic
effects are not present.

IV. RESULTS

Here we present the spectra obtained, using the methods
described previously, on the lattices listed in Table I.

A. m� ¼ 391 MeV, 243 � 128

We can illustrate the general trend of spectrum results
using this case, the lowest quark mass and largest volume
considered. In Fig. 11 we show the isoscalar and isovector
spectrum separated by JPC. The black/green boxes indicate
the degree of hidden-light/hidden-strange mixing as

determined by the mixing angle,3 extracted as described
earlier. We observe that with a few exceptions, notably 0�þ
and 1þþ, the spectrum shows very little mixing of light and
strange. A detailed spectrum of exotic JPC mesons is
extracted, as is a set of states in the nonexotic spectrum
that have large overlap onto operators featuring a chromo-
magnetic construction—the corresponding hybrid meson
phenomenology will be discussed later.

B. m� ¼ 391 MeV, volume dependence

The dependence of the isoscalar spectrum on the lattice
volume is presented in Fig. 12. The gross structure of the
spectrum is observed to be robust with respect to changes
in the volume and what changes there are tend to be not
much larger than the statistical uncertainty. This relatively
mild dependence on the volume should come as a surprise
given that the true finite-volume spectrum will be made up
of admixtures featuring strongly volume-dependent multi-
meson states. We remind the reader of the discussion in
Sec. III B, where we argue that the fermion bilinear opera-
tors in use here do not have good overlap onto multimeson
basis states. With this in mind, variation of an extracted
energy within the hadronic width of a state as the volume is
varied should not come as a surprise.
Perhaps the only unexpected variation with volume is

that of the �0, which should be exactly stable in our
calculations since the decay channel ��� is kinematically
closed. We do not have an explanation for this variation,
although a possible candidate might be the volume depen-
dence of gauge-field configurations of nontrivial topology
since they would contribute to the Uð1ÞA anomaly that can
split the �0 from the �.

1.0

0.0

FIG. 9 (color online). Overlap matrix elements Zn
ð‘;sÞi ¼ hnjOð‘;sÞyi j0i for the lightest eight states of the Tþþ1 correlation matrix at

m� ¼ 391 MeV on the 243 � 128 lattice. Each bar represents a distinct operator construction �, with the color-coding indicating the J
from which the operator was subduced and the flavor construction of the quark fields. The bars are normalized such that for each
operator the largest overlap onto any state in the extracted 22-state spectrum is 1.0.

 0

 30

 60

90

 0  5  10  15  20

FIG. 10 (color online). 	ðtÞ from Eq. (15) for nine different
constructions � (different colors), for the lowest two states
jn ¼ 0i, jn ¼ 1i in Tþþ1 . The gray band shows a constant fit

in time.

3For the lighter state in the mixed pair the size of the black part
of the bar is cos 2	 and the green sin 2	 and vice versa for the
heavier state.
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C. SUð3ÞF point, m� ¼ 702 MeV, ð16; 20Þ3�128

In this case we take all three quark flavors to be mass
degenerate, with the mass we have tuned to correspond to

the physical strange quark. Here, because there is an exact

SUð3Þ flavor symmetry, we characterize mesons in terms of

their SUð3ÞF representation, octet (8) or singlet (1), and

compute correlation matrices using the basis in Eq. (5).

The octet correlators feature only connected diagrams

while the singlets receive an additional contribution from
a disconnected diagram. Since the strange quarks are now
no heavier than the ‘‘light’’ quarks, any splitting between
states in the octet and singlet spectra is purely due to the
disconnected diagrams and thus to ‘‘annihilation dynam-
ics.’’ In Fig. 13 we present the spectra extracted on two
lattice volumes.

D. Quark mass and volume dependence

Figures 14–16 show the quark mass and volume depen-
dence of the extracted isoscalar and isovector spectra.

In general, the extracted spectrum is fairly consistent
across quark masses. There are some cases, such as the
second level in 3þ�, that are not cleanly extracted at the
lowest pion mass.

We refrain from performing extrapolations of the masses
to the limit of the physical quark masses, since, as we have
already pointed out, we expect most excited states to be
unstable resonances. A suitable quantity for extrapolation

might be the complex resonance pole position, but we do
not obtain this in our simple calculations using only single-
hadron operators.
We discuss the specific case of the 0�þ and 1�� systems

in the next subsections.

E. The low-lying pseudoscalars: �, �, �0

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the � and � mesons are exactly stable and
�0 is rendered stable since its isospin conserving ���
decay mode is kinematically closed. Because of this,
many of the caveats presented in Sec. III B do not apply.
Figure 17 shows the quality of the principal correlators
from which we extract the meson masses, in the form of
an effective mass,

meff ¼ 1

�t
log

�ðtÞ
�ðtþ �tÞ ; (16)

for the lightest quark mass and largest volume consid-
ered. The effective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.
Figure 18 indicates the detailed quark mass and volume

dependence of the � and �0 mesons. We have already
commented on the unexplained sensitivity of the �0 mass
to the spatial volume at m� ¼ 391 MeV, and we note that
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FIG. 11 (color online). Isoscalar (green and black) and isovector (blue) meson spectrum on the m� ¼ 391 MeV, 243 � 128 lattice.
The vertical height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-
lying states having dominant overlap with operators featuring a chromomagnetic construction—their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.
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FIG. 12 (color online). Volume dependence of isoscalar spectrum for m� ¼ 391 MeV. The vertical ellipses indicate that while there are states extracted in this energy region,
their extraction is not robust. Split columns (as for 1��) are used to separate states which happen to appear in the same energy region. States outlined in orange are the lowest-
lying states having dominant overlap with operators featuring a chromomagnetic construction.
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since only a 163 volume was used at m� ¼ 524 MeV, the
mass shown there may be an underestimate.

Figure 19 shows the octet-singlet basis mixing angle,
� ¼ 	� 54:74�, which by definition must be zero at
the SUð3ÞF point.4 While we have no particularly well-
motivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value �� 10� [1,45–47].

F. The low-lying vector mesons: �, !, �

Figure 20 shows the effective masses of !, � and �
principal correlators on the m� ¼ 391 MeV, 243 � 128
lattice. The splitting between the � and ! is small but
statistically significant, reflecting the small disconnected
contribution at large times in this channel. At the pion
masses presented in this paper, the ! and � mesons are
kinematically stable against decay into their lowest thresh-
old channels, ��� and K �K. In Fig. 21 we show the quark
mass and volume dependence of the low-lying vector
mesons along with the relevant threshold energies. The �
is unstable at our lightest pion mass and in the figure we
show the � ‘‘mass’’ extracted from analysis featuring only
fermion bilinear operators (as performed in this paper). We
also show the � as a resonance (in blue), determined in [43]

using a larger basis featuring also ��-like constructions
and a Lüscher analysis. We observe that the more naive
calculation gives, on any given volume, a single level
within the hadronic width of the resonance, as we have
proposed earlier.
Figure 22 shows the mixing angle in the flavor basis, 	,

for the !=� system. This angle must be 54.74� at the
SUð3ÞF point while it is clearly very small for
m‘ < ms—it is possible for the angle to fall very rapidly
if the disconnected contributions remain small, while the
connected contributions �C‘‘, �Css start to differ signifi-
cantly. The trend toward a very small mixing angle at the
physical quark mass is in approximate agreement with the
value 3.2(1)� extracted from a model fit describing experi-
mental vector to pseudoscalar radiative transitions [46].

V. PHENOMENOLOGY

A phenomenology of the isovector spectrum extracted
on these lattices was presented in [14,26]. Through ob-
servation of patterns of near degeneracy in the spectrum,
and consideration of the relative values of extracted
spectral overlaps hnjOyj0i for a set of operators O
with fairly simple model interpretations, a description
was provided that has the bulk of the spectrum being q �q
constructions featuring orbital angular momentum, as it
is in constituent quark models. In addition a set of states
was identified which did not fit into this picture; these
were interpreted as being hybrid mesons, in which a q �q
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FIG. 13 (color online). Octet and singlet meson spectrum on the exact SUð3ÞF symmetric m� ¼ 702 MeV, 163 � 128 and 203 �
128 lattices. States outlined in orange are the lowest-lying states having dominant overlap with operators featuring a chromomagnetic
construction. The vertical ellipses indicate that while there are states extracted in this energy region, their extraction is not robust.

4Here we are using a convention where j�i ¼ cos�j8i �
sin �j1i, j�0i ¼ sin �j8i þ cos�j1i with 8, 1 having the sign
conventions in Eq. (5).
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pair in a color octet is coupled to a chromomagnetic
gluonic excitation. The lightest such set was found with
quantum numbers ð0; 1; 2Þ�þ, 1�� where only the 1�þ
member is manifestly exotic.

We find that the isoscalar spectra presented here
also generally fit well into this phenomenology—since
there are no dramatic changes in the gross structure of
the spectrum as we vary the quark mass [apart from
the required merging of two states into the octet at the
SUð3ÞF point], we can use Fig. 11 to illustrate our typical
isoscalar spectrum.

We observe that there is very little light-strange mixing
in most of the spectrum, and generally the 1ffiffi

2
p ðju �ui þ jd �diÞ

dominated state is very close in mass to the corresponding
isovector state, suggesting that the role of q �q annihilation
is relatively small. The js�si dominated states are generally
a little heavier as we would expect from the heavier strange
quark mass. There appears to be a general trend that the
splitting between the dominantly light and dominantly
strange states reduces as we go higher in the spectrum,
which might be interpreted as excitation energies for light
quarks being slightly larger than for strange quarks.
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FIG. 15 (color online). See the caption of Fig. 14.
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FIG. 14 (color online). Meson spectrum, in MeV, as a function of m2
� in GeV2. Isoscalar states dominantly of light quark

construction shown in black, and dominantly of strange quark construction in green. States with a large degree of light/strange
mixing are shown in dark red. Isovector states are shown in light blue. Many points are displaced horizontally from the correct value of
m2

� (shown by the vertical dashed lines) for clarity. With exact SUð3ÞF at the largest quark mass, flavor octet states are shown in blue
and flavor singlet states in pink. At each pion mass, the thickest lined points show the largest volume available, with thinner lines
representing smaller volumes—note that in the m� ¼ 524 MeV case there are two volumes ð163; 203Þ for the isovector spectrum, but
only one (163) for the isoscalar. States surrounded by an orange glow are those found to have large overlap onto chromomagnetic
operators and which are suspected to lie in the lightest hybrid meson supermultiplet.
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These observations regarding the hidden light/
strange makeup are in qualitative agreement with the
standard phenomenology of some experimentally observed
states, in particular the lightest 2þþ mesons: a2ð1320Þ,
f2ð1270Þ, f02ð1525Þ. Relative rates of decay of f2, f

0
2 into

�� and K �K final states, as well as the �� widths [1], are
compatible within models with only a very small amount
of hidden light-strange mixing.

There are clear exceptions to the general observation
that light-strange mixing is small, The case of the lowest
0�þ states, corresponding to the � and �0, was already
discussed in Sec. IVE. They appear to have mixing much
closer to the octet, singlet representations of SUð3ÞF, re-
spectively, in agreement with the conventional phenome-
nology of these states. The first excited state pair in the 0�þ
channel, although not determined with high statistical
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FIG. 16 (color online). See the caption of Fig. 14.
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precision, appears to have a much smaller mixing angle.
The experimental situation regarding excited isoscalar
pseudoscalars, �ð1295Þ; �ð1405Þ; �ð1475Þ . . . , is not suffi-
ciently clear for us to make any firm comparisons.

The other notable exception to the observation of ideal
mass mixing is 1þþ, where both the lowest pair and the
first set of excitations show significant mixing. The mixing
angle for the lowest two states is shown in Fig. 23, where
we observe a significant departure from 	 � 0. At the
SUð3ÞF point there remains a large disconnected contribu-
tion splitting the singlet state from the octet. We can
compare this pair with the experimental f1ð1285Þ,
f1ð1420Þ; these states are relatively narrow as they are

forbidden to decay into a pair of pseudoscalars, the channel
of largest phase space, instead decaying into final states of
higher multiplicity. The radiative decays of f1ð1285Þ to ��
and �� suggest a mixing angle 	 ¼ 21ð5Þ� (following
the formalism presented in [2], using current Particle
Data Group averages [1]), which is comparable to our
extracted angles.
A clear set of isoscalar exotic JPC mesons is extracted.

As seen in Fig. 11, there is a pair of isoscalars a little
heavier than each of the isovector states with 1�þ, 0þ� and
the two 2þ� states. In [26] the distribution of JPC exotics
observed in the isovector spectrum was proposed to be
due to a chromomagnetic gluonic excitation coupling to
a color-octet q �q pair in an S wave (1�þ) or in a P wave
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FIG. 20 (color online). Effective masses [Eq. (16) with
�t ¼ 3at] of principal correlators for the T

��
1 irrep. The lowest

level in the isovector sector (�, t0=at ¼ 9) and the lowest
two levels in isoscalar sector (!, �, t0=at ¼ 6), on the
m� ¼ 391 MeV lattice of volume 243 � 128. Triangles at right
show the mass determined with a two-exponential fit to the
principal correlator. The rectangles show a constant fit to the
effective mass over the time range indicated, in good agreement
with the two exponential fits. Stacked graphs below the main
graph display the time slice correlation with respect to a refer-
ence time of 12at.
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FIG. 18 (color online). Quark mass and volume dependence of
low-lying pseudoscalar mesons. Plotted against m2

� in units of
GeV2.
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FIG. 17 (color online). Effective masses [Eq. (16) with
�t ¼ 3at] of principal correlators for the lowest level in the
isovector sector (�, t0=at ¼ 6) and the lowest two levels in
isoscalar sector (�, �0, t0=at ¼ 4), on the m� ¼ 391 MeV
lattice of volume 243 � 128. Triangles at right show the mass
determined with a two-exponential fit to the principal correlator.
The rectangles show a constant fit to the effective mass over the
time range indicated, in good agreement with the two exponen-
tial fits. Stacked graphs below the main graph display the time
slice correlation with respect to a reference time of 9at.
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FIG. 19 (color online). Octet-singlet mixing angle
� ¼ 	� 54:74� for �, �0. Plotted against m2

� in units of GeV2.
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ð0þ�; 2þ�; 2þ�Þ. The isoscalar spectrum has the same
systematics. There is seen to be some degree of hidden
light-strange mixing for the 1�þ and possibly the 0þ�, but
little or nothing for the 2þ� states. A large splitting be-
tween singlet and octet remains for the 1�þ at the SUð3ÞF
point, suggesting that quark annihilation is important for
these states. To date there are no experimental candidates
for isoscalar exotic JPC mesons.

States with large overlap onto operators featuring a
chromomagnetic construction are, as they were in the
isovector spectrum, identified in the nonexotic spectrum
at an energy scale comparable to the lightest 1�þ states.
We argue that they make up the lightest hybrid supermul-
tiplet with ð0; 1; 2Þ�þ, 1��, corresponding to a chromo-
magnetic excitation coupled to color octet q �q in an Swave.
There are hints for some light-strange mixing in these

states, and at the SUð3ÞF point these states are all compat-
ible with having some octet-singlet splitting. Thus, it ap-
pears that annihilation contributions are a generic feature
for the lightest hybrid supermultiplet, even in channels like
1�� where the other mesons, associated with q �q structure,
apparently feel very little from annihilation. Our model
description of hybrid mesons is that they have structure
½q �q�8c �G8c , and since the quarks are in a color octet,

rather than the conventional color singlet, their annihilation
systematics need not be the same as in regular mesons. We
were not able to resolve the nonexotic partners of the 0þ�,
2þ�, 2þ� exotics constructed from a chromomagnetic
excitation coupled to color octet q �q in an P wave—these
states lie in an energy region where the positive parity
spectrum is becoming dense and hard to disentangle, but
interested readers should see Ref. [48] where such states
were successfully extracted in a comparable calculation of
charmonium.
We remind the reader that we were unable to propagate

correlators featuring glueball operators through our varia-
tional solution and thus are not able to discuss the role,
if any, that glueball basis states play in the spectrum. In
passing we note that the 2þþ, 0�þ glueballs determined in
Yang-Mills calculations [11] would be located at the very
top of our extracted spectrum. The lightest glueball is
expected to have scalar quantum numbers, but we have
not presented results for the scalar sector as it is clear that
two-hadron operator constructions will be essential for
accurately determining the spectrum in this channel.

VI. OUTLOOK

We have taken advantage of favorable properties of the
distillation framework to compute the disconnected dia-
grams required for isoscalar mesons with high statistical
precision. Furthermore, the factorization between operator
construction and quark propagation inherent in distillation
allowed us to utilize a large basis of fermion bilinear
operators of various spatial structures, including a selection
featuring a chromomagnetic gluonic construction, from
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FIG. 21 (color online). Quark mass and volume dependence of
the low-lying vector mesons. � masses (circles) shifted to the
right for clarity (the vertical dashed lines show the actual pion
mass). The blue circle (shifted further to the right) shows the � as
a resonance as determined in [43]—inner error bars indicate the
very small statistical uncertainty on the mass, and outer bars
show the hadronic width. Dashed lines show the decay threshold
into two pions (relevant for the �) and three pions (relevant for
the !). Triangles show the K �K threshold relevant for decay of
the �. Plotted against m2

� in units of GeV2.
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FIG. 23 (color online). Flavor basis mixing angle 	 for lightest
two 1þþ states. Plotted against m2

� in units of GeV2.
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which matrices of correlation functions could be evaluated.
Variational analysis of these led to detailed excited
state spectra that were interpreted phenomenologically.
While the extracted spectra, which showed very little
volume dependence, cannot be complete, as they clearly
lack the dense and strongly volume-dependent spectrum
of expected multihadron states, we have argued that they
are a good guide to the distribution of resonant meson
excitations.

Ultimately comparison to experimental observations
requires more than a semiquantitative description of the
position of various meson excitations—calculations must
observe resonances, and to do this we must resolve the
complete spectrum of eigenstates in a finite volume. We
observed in [43] that to practically achieve this it is
mandatory to include operators which resemble multiple
mesons with relative momentum. With the complete dis-
crete spectrum in a given energy region determined,
Lüscher methods [35,44,49–52] and inelastic extensions
[53–56] can be applied to determine scattering amplitudes
that may have a resonant interpretation.

For excited hadron spectroscopy, calculations at the
physical pion mass are not yet warranted—with a
140 MeV pion, a large number of kinematic thresholds
would be open for even the lowest resonances, and this
would demand involved coupled-channel analyses featur-
ing channels of high multiplicity ð���;���� . . .Þ. These
coupled-channel analyses are still in their infancy even for
simpler cases involving only two-body scattering channels.
A sensible approach, given this, is to develop the tech-
niques for extracting hadron scattering amplitudes for the
case of heavier pions where there will be a restricted
number of open channels and then, once such techniques
are mature, to push down the quark masses to their physical
values.

Using what we know empirically, we have cause to be
optimistic that the problem may not be as complicated
as it could be. It is likely that we will find in QCD
calculations, as was found experimentally, that true
high-multiplicity final states are not significantly directly
populated in hadron resonance decays, with most decays
going through intermediate two-body states featuring iso-
bar resonances.

In addition to studying the excited state resonant spec-
trum through evaluation of scattering amplitudes in finite
volume, there are a number of more straightforward ex-
tensions of the technology presented in this paper to phe-
nomenologically interesting quantities. Computation of
two-point correlation functions using unsmeared fermion
bilinear operators at the source and distillation smeared
operators at the time-varying sink would allow access to
decay constants and distribution amplitudes of isoscalar
and isovector mesons. Extension to three-point correlation
functions with a local vector current insertion between
distillation smeared source and sink operators would yield
electromagnetic form factors and radiative transition
matrix elements [57].
The results presented in this paper represent important

progress toward a description of isoscalar mesons within
QCD. Furthermore, they suggest that the calculations pro-
posed above can realistically be attempted and hence give
the prospect of a greater theoretical understanding of the
isoscalar meson sector.
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