Highlights from the GlueX experiment

Lubomir Pentchev for the GlueX Collaboration

First measurements of near-threshold J/ψ exclusive photoproduction off the proton (probing gluonic structure of the proton

at high x)

Introduction

- Overview of Hall D/Gluex apparatus
- Selected results from GlueX/Hall D experiments:
 - searching for hybrid mesons
 - beam asymmetries
 - η decay via Primakoff reaction
- Near-threshold J/ψ photoproduction:
 - the experiment
 - proton gluonic distributions at high-x
 - search for LHCb pentaquarks
 - future expected results

Experiment	Description	PAC days
		$\operatorname{complete}$
GlueX-I	Spectroscopy of light and	80 + 40
	hybrid mesons (low intensity)	80 + 40
GlueX-II	Spectroscopy of hadrons with	220 +
	strange quarks (high intensity)	
PrimEx-eta	Eta radiative decay width	79
		24
CPP	Charge pion polarizability	25
JEF	Rare eta decays	-
SRC	Short-range correlations	15
	with real photon beams	

Hall D Apparatus

- Photon beam from coherent Bremsstrahlung off thin diamond
- Photon energy tagged by scattered electron ~ 0.2% resolution
- Beam collimated at 75m, <35 μrad
- Intensity: ~ 2 10⁷ 5 10⁷ γ/sec above J/ψ threshold (8.2 GeV) – total ~68 pb⁻¹ in 2016-2017 runs (25% of total statistics up to date)
- Photons are linearly polarized ~ 40% at peak; polarization plane angle alternates from run to run: PERP, PARA

GlueX spectrometer

2T-solenoid, LH target Tracking (FDC,CDC), Calorimetry (BCAL,FCAL), Timing (TOF,SC)

- Hermetic detector: $1 120^{\circ}$ polar and full azimuthal acceptance
- Tracking: $\sigma_p/p \sim 1 5\%$ Calorimetry: $\sigma_E/E \sim 6\%/\sqrt{E} + 2\%$

Searching for light hybrid mesons ($q\bar{q}g$)

Hybrids with exotic quantum numbers (not allowed in $q\overline{q}$ model)

Experiment	p_{beam}, GeV	Reaction	Resonance	
GAMS	32,38,100	$\pi^- p \to \pi^0 \eta n$	$\pi_1(1400)$	
E852	18	$\pi^- p \to \pi^- \eta^{(\prime)} p$	$\pi_1(1400/1600)$	
Crystal Barrel	Annihilation	$\bar{p}n \to \pi^- \pi^0 \eta$	$\pi_1(1400)$	IeV
VES	37	$\pi^- p \to \pi^- \eta^{(\prime)} p$	$\pi_1(1600)$	n/Λ
COMPASS	190	$\pi^- p \to \pi^- \eta' p$	$\pi_1(1600)$	и
COMPASS	190	$\pi^- p \to \pi^- \eta p$	$\pi_1(1400)$	

COMPASS:
$$\pi_1 \rightarrow \pi^- \eta^{(i)}$$

COMPASS, PLB 740 (2015)

lattice 2500 2^{+-} 2000 π₁ best candidate 1500 1000 'n 500 Dudek et al. PRD 88 (2013)

Exotic light

3000

hybrids from

Searching for hybrids: JPAC analysis of COMPASS data

Searching for hybrids: GlueX $\eta \pi / \eta' \pi$ spectroscopy

- GlueX statistics competitive with COMPASS one
- Different production mechanism, different background, multiple final states available
- GlueX linearly polarized photon beam important tool in understanding the ηπ spectrum

Beam Asymmetry

$$\gamma p \to (\pi^0, \eta, \eta') p$$

 $Y(\phi) \sim (1 - P_\gamma \Sigma \cos 2(\phi - \phi_\gamma))$

⁻ *GlueX, PRC 95 (R) (2017)* – ∕ first Jlab 12 GeV paper

Natural exchange dominates if $\Sigma \sim 1$ More papers on asymmetries expected in 2019

η radiative decay via Primakoff reaction $\eta \rightarrow \gamma \gamma$ yield [8.0 GeV < $E_{_{\!\gamma}}$ < 11.2 GeV] Counts / 0.08 deg 2200 LUE 2000 1800 Preliminary 1600 1400 η 3 Total $\gamma + {}^{4}\text{He} \rightarrow \eta + {}^{4}\text{He}$ 1200 do/d0 (ubarn / rad) Primakoff 2.5 E., = 11GeV 1000 2 800 1.5 1 600 0.5 400 0 2 3 0 200 θ_n (deg.) 0 2.5 3 3.5 Production Angle, θ_{η} [deg.] 0.5 1.5 2 3.5 0

Precision measurement of $\Gamma\eta \rightarrow \gamma\gamma$:

significant impact on fundamental QCD parameters (Goldstone nature of light pseudoscalars, light quark mass ratios, chiral anomaly etc.)

Near-threshold J/ ψ photoproduction

Exclusive reaction $\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$

- Near threshold all valence quarks participate, corresponding to high-x gluon exchange
- Using VMD $(\gamma \rightarrow J/\psi)$ one can study $J/\psi p \rightarrow J/\psi p$
- Look for LHCb P_c : $\gamma p \rightarrow Pc \rightarrow J/\psi p$

Near-threshold J/ ψ photoproduction

- Electrons identified by E/p
- Tagged photon beam, 0.2% energy resolution
- Kinematic fit: 13 MeV mass resolution
- Presented results (~470 J/ ψ): 25% of statistics accumulated up to date
- Preliminary results (ERRORS ONLY!) will be shown based on 70% of data

J/ψ total cross-section

Brodsky et al.: $\sigma(E_{\nu})$ depending on number of hard-gluons exchanged using dimensional scaling

GlueX errors: quadratic sums of statistical and systematic ones SLAC data: $\gamma d(p) \to J/\psi X \text{ from } d\sigma/dt (t = t_{min})$ toward threshold less $F^2(t) \sim (1 - t/m_{2g}^2)^{-4} m_{2g} = 1.14 \text{ GeV}$ Cornell data: $\gamma Be \rightarrow J/\psi X$

GlueX data falls steeply than 2g exchange model

J/ψ differential cross-section – perturbative calculations

Kharzeev et al. EPJ C (1999):

- Forward J/ ψ -p scattering amplitude calculated using gluonic PDF and dispersion relations.
- Very sensitive to gPDF at high x:

$$d\sigma/dt(t=0) \sim x^2 g^2(x)$$
 where $x = m_{J/\psi}^2/s$

 real part of the amplitude dominates, contains scale anomaly term related to the mass of the proton arising from gluons.

J/ψ total cross-section – perturbative calculations

Kharzeev et al. EPJ C (1999):

- t-dependence from fit of the exponential slopes at different energies
- Shape of the theoretical curve similar to Gluex data
- Absolute normalization within the uncertainties of the model

J/ψ differential cross-section and proton gluonic FF

J/ψ total cross-section – non-perturbative (holographic) calculations

Y. Hatta, A. Rajan, and D.-L. Yang, arXiv:1906.00894:

Proton gluonic FF: "..these are nothing but the gravitational form factors A_g, B_g, C_g, \bar{C}_g " $\langle P'|(T_g)^{\mu}_{\mu}|P \rangle = \langle P'| \left(\frac{\beta(g)}{2g} F^a_{\mu\nu} F^{\mu\nu}_a + m\gamma_m \bar{\psi}\psi \right) |P \rangle$ $= \bar{u}(P') \left[A_g M + \frac{B_g}{4M} \Delta^2 - 3 \frac{\Delta^2}{M} C_g + 4 \bar{C}_g M \right] u(P)$

A_g, *B_g*, *C_g* were recently calculated on lattice: *P. E. Shanahan and W. Detmold, arXiv:1810.04626*

LHCb pentaquarks

 $\Sigma_c^+ \bar{D}^{*0}$

NPc(4457)

LHCb

- J^{P} of P_{c} states not determined yet ٠
- Molecules (most likely), but compact • states or rescattering effects not excluded

State	$M \;[{ m MeV}\;]$	$\Gamma \;[\mathrm{MeV}\;]$	(95% CL)	R [%]	
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+}_{-}~^{3.7}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$	
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$	
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^+_{-1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$	17

LHCb pentaquarks and J/ψ photo-production

 If LHCb pentaquarks exist they should be seen in s-channel photoproduction (free of rescattering effects in the final state):

- M.Karliner and J.Rosner, arXiv: PLB 752, 329 (2016).
- A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

P_c(4457)

J/ψ cross-section: model-dependent upper limits

Assuming:

- all P_c independent $J^P = 3/2^-$
- s-channel model: $\sigma(\gamma p \rightarrow P_c \rightarrow J/\psi p) \approx$ 0.35 µb Br²(P_c $\rightarrow J/\psi p$) (2J+1)
- JPAC model for t-channel: Pomeron and tensor part extracted at high energies

	$\mathcal{B}(P_c^+ \to J/\psi p)$	Upper Limits, %	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$J \to J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_c^+(4457)$	2.7	3.8	2.9	3.9

Upper limits at 90% confidence level

J/ψ cross-section: model-dependent upper limits

	$\mathcal{B}(P_c^+ \to J/\psi p)$	Upper Limits, %	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$\rightarrow J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_{c}^{+}(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_{c}^{+}(4457)$	2.7	3.8	2.9	3.9

Upper limits at 90% confidence level

J/ψ cross-section: model-dependent upper limits

Assuming:

- all P_c independent $J^P = 3/2^-$
- s-channel model: $\sigma(\gamma p \rightarrow P_c \rightarrow J/\psi p) \approx$ 0.35 µb Br²(P_c $\rightarrow J/\psi p$) (2J+1)
- JPAC model for t-channel: Pomeron and tensor part extracted at high energies

	$\mathcal{B}(P_c^+ \to J/\psi p)$	Upper Limits, %	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$J \to J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_{c}^{+}(4440)$	1.6	2.3	1.2	1.8
$P_{c}^{+}(4457)$	2.7	3.8	2.9	3.9

Upper limits at 90% confidence level

$Br(Pc \rightarrow J/\psi p)$ calculations: molecular vs hadrocharmonium

model	$\Gamma_{P_c}, { m MeV}$	$\Gamma_{J/\psi p}, { m MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03 (4450)	(0.14% (4450))	$1/2^{-}$ (4312)	M.Eides and V.Petrov
(OPE)				$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$				$3/2^{-}$ (4457)	
hadro-	-(4312)	suppr.(4312)	suppr. (4312)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	25% (4440)	$1/2^{-}$ (4440)	and M.Eides, V.Petrov
	16.2 (4457)	11 (4457)	68% (4457)	$3/2^-$ (4457)	M.Polyakov,arXiv:1904.1161

all subsystems in color singlet states

$Br(Pc \rightarrow J/\psi p)$ calculations: compact diquark

model	$\Gamma_{P_c}, \mathrm{MeV}$	$\Gamma_{J/\psi p}, \mathrm{MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
compact	_	suppressed	suppressed	$3/2^-$ (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				$5/2^+$ (4457)	

diquarks in color anti-triplet states

The bound-state effect in (uC)-diquark reduces the probability to form $C\overline{C}$ -state

Lower limits on $Br(P_c \rightarrow J/\psi p)$ from data?

X. Cao, J-P. Dai arXiv:1904.06015

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

$$\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$$

 $\mathcal{B}(\Lambda_b \to P_c^+ K^-) < 10^{-3}$ at the level of $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$

(model dependent 2-4%) $> \mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$ GlueX

Lower limits on $Br(P_c \rightarrow J/\psi p)$ from data?

 $\mathcal{B}(\Lambda_b \to P_c^+ K^-) < 10^{-3}$ at the level of $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$

(model dependent 2-4%) $> \mathcal{B}(P_c^+ \rightarrow J/\psi p) = 0.05\%$ GlueX

J/ψ total cross-section – future results

Preliminary results with 70% of statistics up to date – only errors (stat.) shown

Outlook

- First phase of GlueX experiment finished and already producing results.
- Next phase strangeness program and higher intensity.
- First measurement of near-thershold J/ ψ exclusive photoproduction important input to models of the gluonic structure of the proton at high X.
- Do not see evidence for LHCb pentaquarks and set model-dependent limits on Br(P_c → J/ψp) at several percent level. This allows us to discriminate between different pentaquark models.

Back-ups

Searching for hybrids: light mesons lattice QCD

$Br(Pc \rightarrow J/\psi p)$ calculations: pentaquark models

model	$\Gamma_{P_c}, \mathrm{MeV}$	$\Gamma_{J/\psi p}, \mathrm{MeV}$	$\mathcal{B}(I)$	$P_c \rightarrow J/c$	$\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03(4450)	0.1	4% (44	50)	$1/2^{-}$ (4312)	M.Eides and V.Petrov
(OPE)						$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$						$3/2^{-}$ (4457)	
hadro-	- (4312)	suppr.(4312)	sup	opr. (43	12)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	23	5% (444	0)	$1/2^{-}$ (4440)	and M.Eides, V.Petrov
	16.2(4457)	11 (4457)	68	8% (445	7)	$3/2^{-}$ (4457)	M.Polyakov,arXiv:1904.116
compact	_	suppressed	s	uppresse	ed	$3/2^{-}$ (4312)	A.Ali, A.Parkhomenko
diquark						$3/2^+$ (4440)	Phys.Lett.B793, 365
				\bigwedge		$5/2^+$ (4457)	
molecular	9.8* (4312)	6.5		66%		$1/2^{-}$ (4312)	ZH. Guo and J.Oller
(ERE)	20.6* (4440)	16.3		79%		$1(3)/2^{-}$ (4440)	Phys.Lett.B793, 144
$\Sigma_c \bar{D}^{(*)}$	6.4* (4457)	3.5		55%		$1(3)/2^{-}$ (4457)	
molecular	15.2 (4306)	4**		26%		$1/2^{-}$ (4306)	C.Xiao, J.Nieves, E.Oset,
(DSE)	23.4 (4453)	18**		77%		$1/2^{-}$ (4453)	arxiv:1904.01296
$\Sigma_c \bar{D}^{(*)}$	3.0(4453)	2**		67%		$3/2^{-}$ (4453)	Phys.Rev.D88, 056012

* The total width measured by LHCb has been used.

** The width calculated from coupling constants.

- J/ ψ is suppressed by 10⁻³, VMD coupling dominated by ρ and ω
- How to explain J/ψ photoproduction at high energies with such suppression???
- Other papers (*J. Phys. G4 (1978) 989, Phys. Rev. Lett. 38 (1977) 263)* suggest some moderate suppression (factor of 2-3)

Proton Gluonic Form Factors: A,B,C (lattice calculations)

Hall D layout

