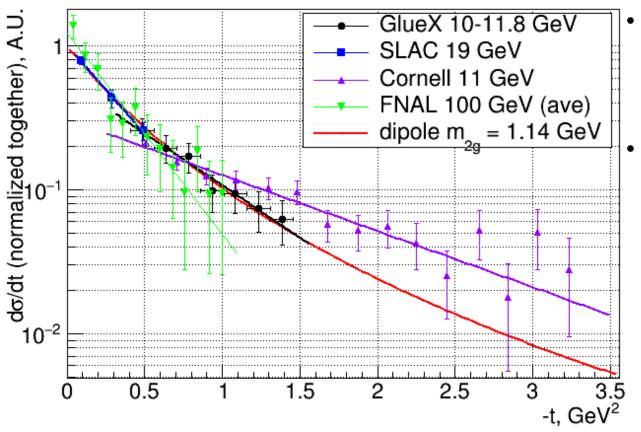

Charmonium Physics with GlueX

Lubornir Pentchev

- JLab 12GeV accelerator has UNIQUE opportunity (high intensity, right energy) to study near threshold charmonium photo-production
- Physics motivation
 - Heavy vs light quark hadrons
 - Study charmonium-nucleon interaction
 - LHCb pentaquarks
 - Other dielectron physics: TCS, rare leptonic decays
- GlueX vs other Halls
 - maximum energy
 - full acceptance in both charge particles and photons
 - possibility to use linearly polarized beam
- Possible GlueX modification for charmonium running
 - Trigger, detector modifications at high intensity
 - Electron/pion separation

Why Heavy Quarks

- Hadrons with heavy quarks are much simpler: quarks are almost static, spin-dependent interaction $\sim 1/m_{\rm Q}$
- Very accurate theoretical prediction for the heavy hadrons
- Exotic states with heavy quarks: XYZ states, LHCb pentauqarks



Charmonium-nucleon Interaction

- Charmonium excellent probe to study gluonic content
 of nucleon
- Using VMD $(\gamma \rightarrow J/\psi)$ one can study $J/\psi p \rightarrow J/\psi p$
- Heavy quark system interacts with light quark proton via gluon exchange
- In analogy with the electro-magnetic Form Factor:

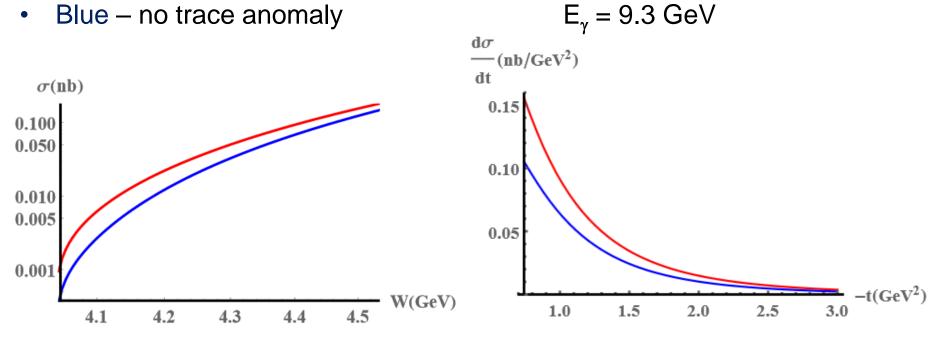
	e.m. FF	gluonic FF
reaction	$ep \rightarrow ep$	$J/\psi p \rightarrow J/\psi p$
transverse size of probe	0	<< 1 fm
effective mass scale m_0	0.84 GeV (vector meson)	~ 1.1 GeV (two-gluon mass)

Proton Gluonic Form Factor

Frankfurt and Strikman PRD66 (2002) suggested tdependence defined by the proton gluonic FF Explains t-slope change with energy (due to t_{min}

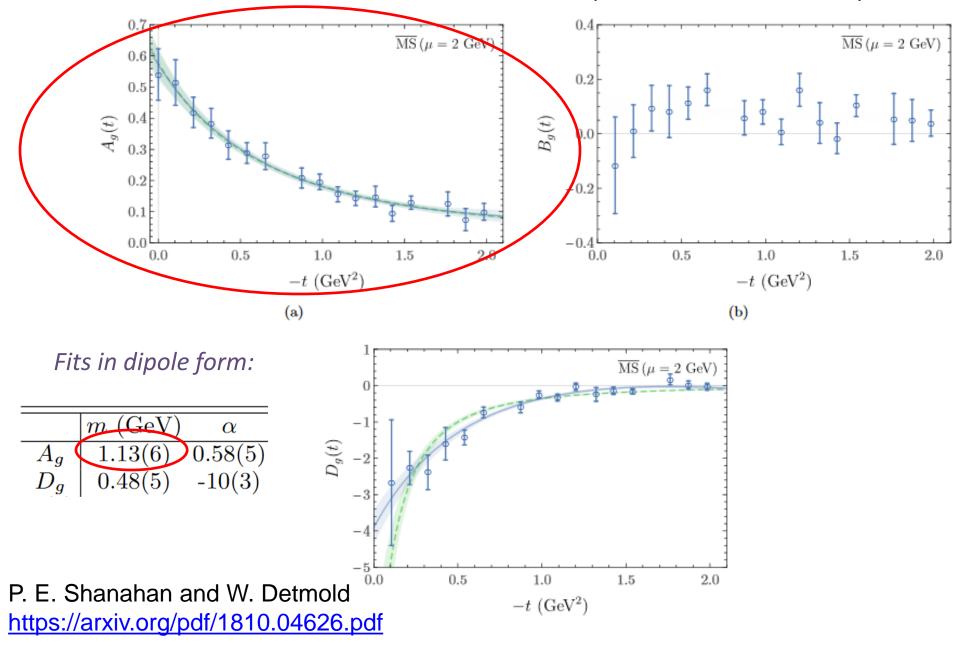
and t-range dependence) in wide energy range: FNAL <E>=100 GeV SLAC 19 GeV Cornell 11 GeV

GlueX 10-11.8 GeV

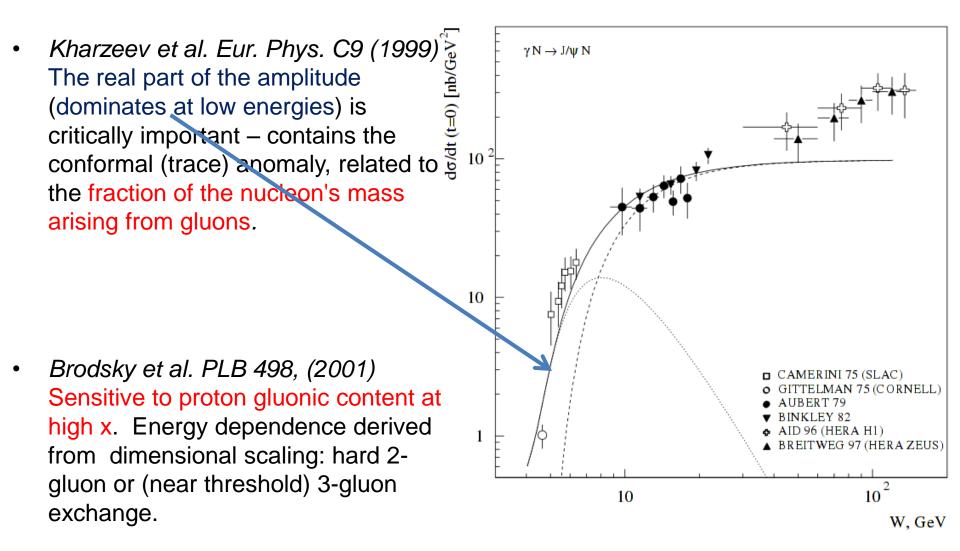

$$F(t) \sim \frac{1}{(1-t/m_{2g}^2)^4}$$

Proton Gluonic Form Factors: A,B,C

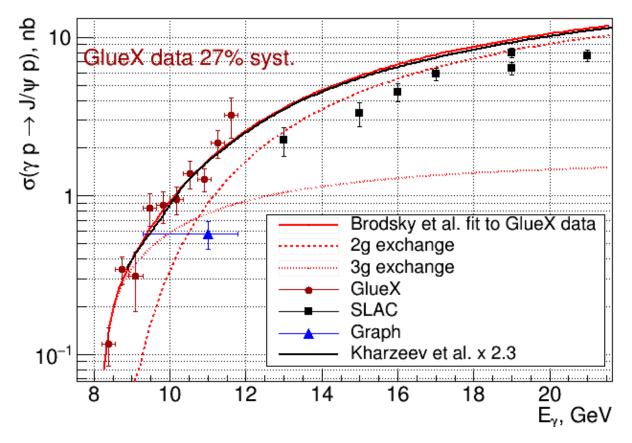
$$J/\psi p \rightarrow J/\psi p: \qquad \langle P'|(T_g)^{\mu}_{\mu}|P \rangle = \langle P'| \left(\frac{\beta(g)}{2g}F^a_{\mu\nu}F^{\mu\nu}_a + m\gamma_m\bar{\psi}\psi\right)|P \rangle$$


$$= \bar{u}(P') \Big[A_g M + \frac{B_g}{4M}\Delta^2 - 3\frac{\Delta^2}{M}C_g + 4\bar{C}_g M\Big]u(P)$$

 Red – maximal trace anomaly term (related to fraction of nucleon mass arising from gluons)

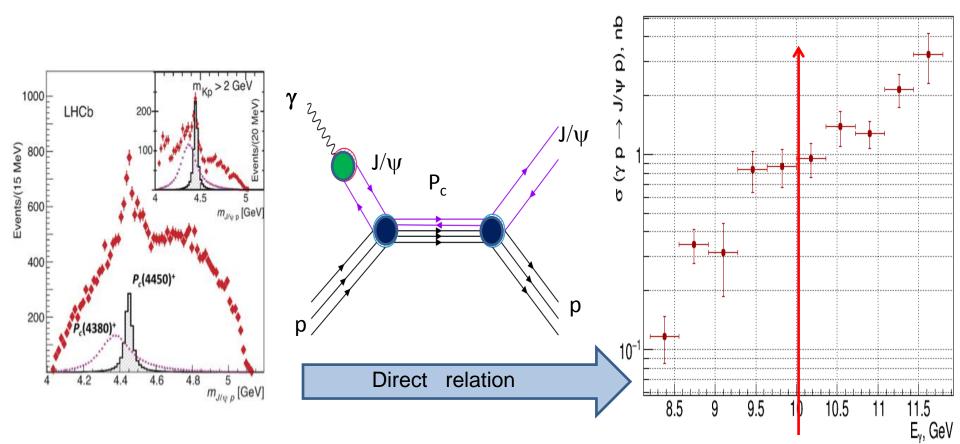


Yoshitaka Hatta and Di-Lun Yang https://arxiv.org/pdf/1808.02163.pdf


Proton Gluonic Form Factors: A,B,C (lattice calculations)

Why charmonium photoproduction NEAR THRESHOLD?

J/ψ photoproduction: comparison to data and theory



Brodsky at.al (2001) fit of the GlueX data ONLY, using F(t) as t-dependence

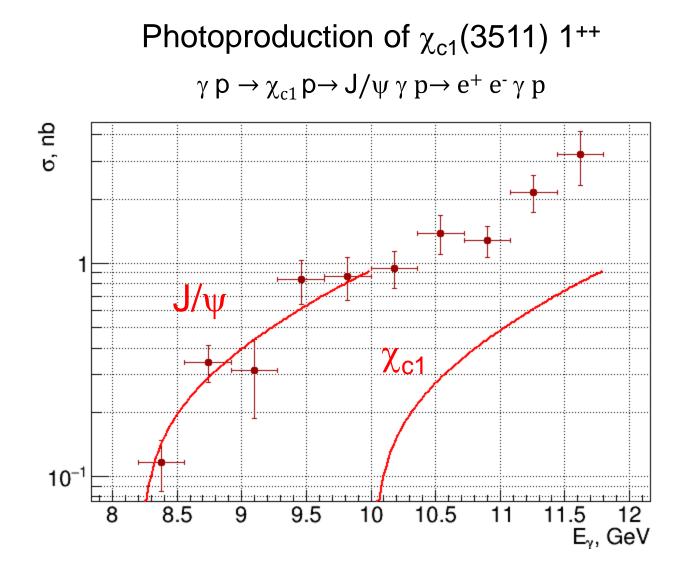
Kharzeev et al (1999) absolute (factor 2-3 uncertainty) perturbative calculations using gluon PDFs - related to the gluonic contribution to the mass of the proton

LHCb petaquarks in s-channel production

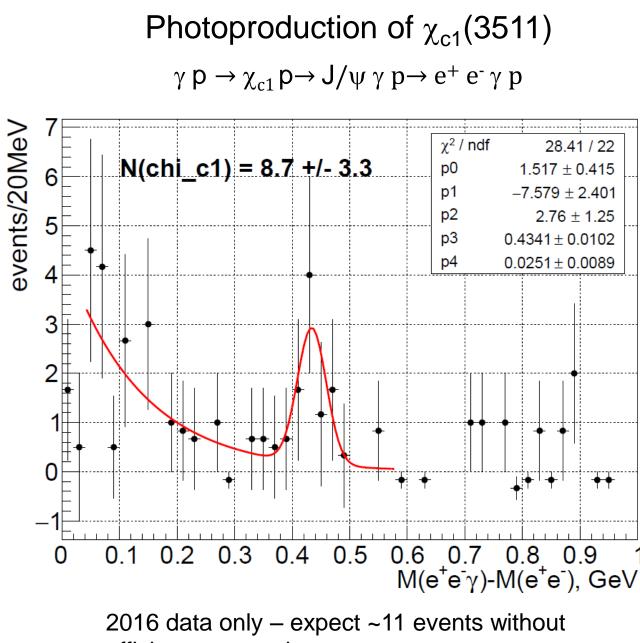
- LHCb pentaquarks observed in $\Lambda_b \rightarrow K^-(J/\psi p)$ R.Aaji et.el PRL 115, (2015)
- DIRECT relation if they exist they should be seen in s-channel photoproduction:

- V.Kubarovsky and M.B.Voloshin, PRD 92.031502 (2015).
- M.Karliner and J.Rosner, arXiv: PLB 752, 329 (2016).
- A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

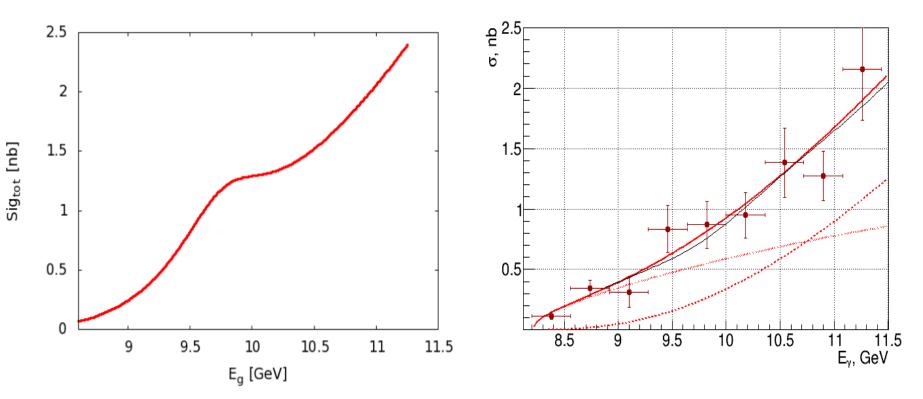
P_c(4450)


LHCb pentaquark: possible explanations

Hadronic molecules	Tightly-bounded states	Kinematic effects	
3		$\frac{\Lambda_b^0}{\chi_{c1}} \xrightarrow{\Lambda^*}_{J/\psi} p$ $\chi_{c1} \longrightarrow J/\psi p$	
Close to two heavy hadron thresholds	Predicted more than 10 J ^P states	Predicted no decay of $P_c(4450)^+ \rightarrow \chi_{c1}p$	
Karliner&Rosner, PRL 115 (2015) 122001	Maiani et al, PLB 749 (2015) 289	Guo et al, PRD 92 (2015) 071502	
iming Zhang's slide			
$P_{c}(4450)$ - $\sum_{c} \overline{D}^{*}$ molecul	If χ_{c1} p decay found		


Narrow width despite big phase space indicates small overlap with $J/\psi p$ state

Pc(4380) much wider – has potential to be explained as tightly-bound system


then it is not a kinematic effect

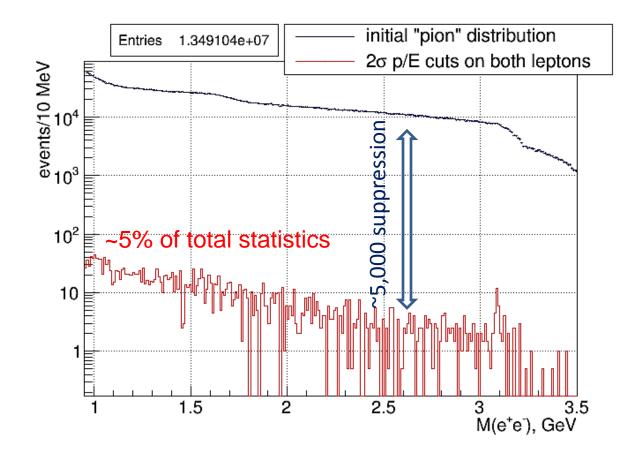
 $N_{J/\psi}/N\chi_{c1} = 4.525 \ (\sigma) \ x \ 1.753 \ (flux) \ x \ 2.915 \ (\chi_{c1} \rightarrow J/\psi \ \gamma \ 34.3\%) = 23$

What can we say about Pc(4380)

JPAC model for Pc(4380) J=3/2 BR=1.5%

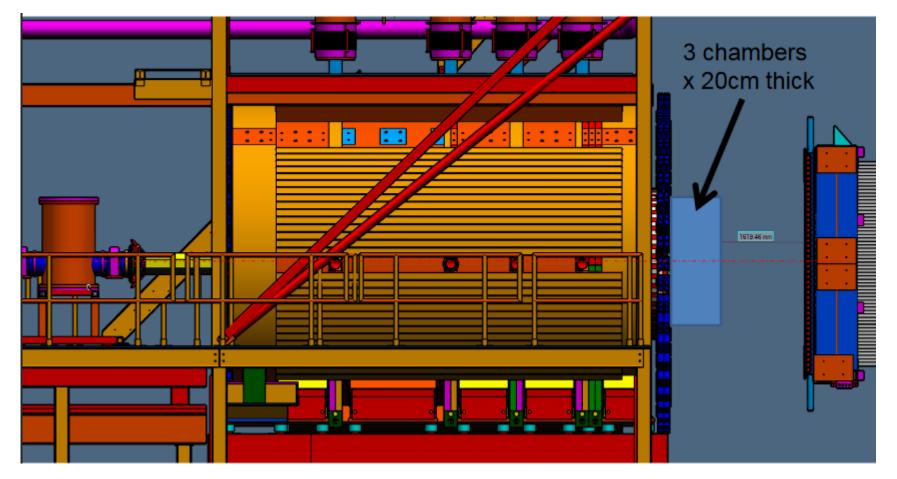
- Cross-section experiments can't separate t-channel from s-channel Pc(4380) production (too wide!)
- Polarization experiments will be needed (using linearly polarized photons in GlueX?)
- Expect results with higher statistics (x8) from LHCb

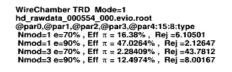
GlueX vs other Halls

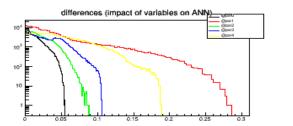

- Full acceptance for charged and neutral particles
 - J/ ψ photoproduction very close to the threshold $(\theta_p > 1^{\circ})$
 - t-dependence
 - $\gamma p \rightarrow \chi_{c1} p \rightarrow J/\psi \gamma p \rightarrow e^+ e^- \gamma p$
 - $\gamma p \rightarrow J/\psi \pi p \rightarrow e^+ e^- \pi p$ (target excitation needed for inclusive experiments at other halls)
- Maximal beam energy
 - Bridge to high energy measurements
 - $\gamma p \rightarrow \chi_{c1} p \rightarrow J/\psi \gamma p \rightarrow e^+ e^- \gamma p$
- Possibility to use linearly polarized beam
 - Pc(4380) polarization experiment
- Other dielectron physics: TCS, rare leptonic decays requiring full acceptance

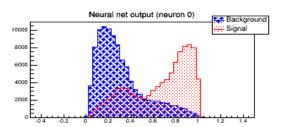
Possible GlueX modifications

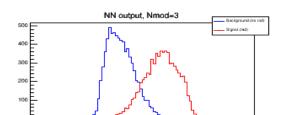
- Most likely scenario: opportunistic physics with GlueX data
 - Currently we have ~450 J/ ψ 's using ~20% of statistics so far
 - With GlueX at high intensity expect ~10k in total
- Depending on results from the other halls and LHCb we may decide to have special charmonium running at very high intensity with some (or all) of the modifications:
 - Trigger: high threshold on sum of two calorimeters
 - Keeping only high energy tagger counters
 - Turning off (or lower HV) the inner part of some detectors (CDC, FDC, TOF, FCAL)
 - Move coherent peak up to 10 GeV:

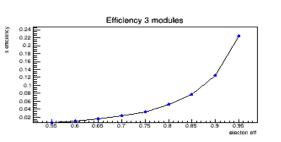

Possible GlueX modifications: e/π separation

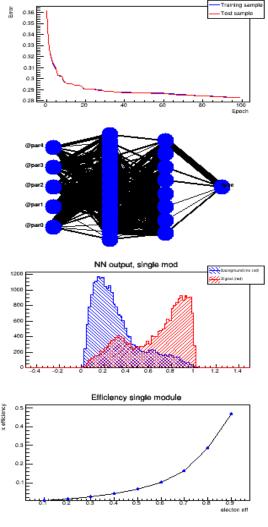

- Pions are 3 orders more numerous and GlueX detector doesn't have enough power to suppress them
- Suppression factor of ~5000 by E/p cuts (2σ) on both leptons using calorimeters

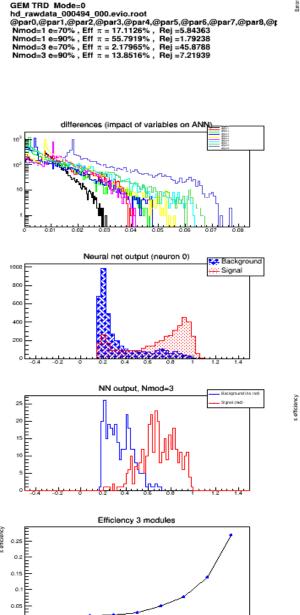

Possible GlueX modifications: e/π separation with TRD

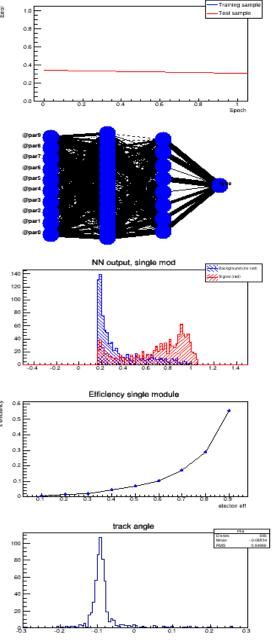

 TRD in forward direction: with 3 chambers expect suppression factor of ~20-50 at 90% efficiency




Possible GlueX modifications: WC-TRD prototype






- Results with WC-TRD prototype
- e/e with/without radiator – 1.9 suppression factor at 90% efficiency

Sergey Furletov reports these results on VCI 2019

Possible GlueX modifications: GEM-TRD prototype

elector off

- Results with GEM-TRD prototype
- e/e with/without radiator – 1.9 suppression factor at 90% efficiency

Sergey Furletov reports these results on VCI 2019

Possible GlueX modifications: extrapolation for e/π separation with TRD

Detector	Dead material in front	Radiator	e/π	e/e_{no} radiator	$DATA_{e/e_{noR}}$
20 mm	no dead material	$20 \mathrm{~cm}$	14.4	6.3	
$20 \mathrm{~mm}$	400 μm Xe, Kapton 75 μm	$20~{ m cm}$	12.5	5.38	
$20 \mathrm{~mm}$	as above	$5~{ m cm}$	2.94	1.37	
$20 \mathrm{~mm}$	as above	$9~\mathrm{cm}$	5.07	1.97	1.8
$20 \mathrm{~mm}$	as above	$15~\mathrm{cm}$	8.0	3.94	
$20 \mathrm{~mm}$	as above	$26~{ m cm}$	16.0	6.3	
$20 \mathrm{~mm}$	as above	$29~\mathrm{cm}$	16.1	6.66	
29 mm	400 μm Xe, Kapton 75 μm	$15~\mathrm{cm}$	11.5	4.22	
$25 \mathrm{~mm}$	as above	$15~{ m cm}$	11.55	4.62	
$15 \mathrm{~mm}$	as above	$15 \mathrm{cm}$	7.54	3.33	
$10 \mathrm{mm}$	as above	$15~{ m cm}$	4.01	1.97	
$5 \mathrm{mm}$	as above	$15~\mathrm{cm}$	1.96	1.38	

Table 1: Rejection factor corresponding to 90% of electron efficiency

Sergey Furletov reports these results on VCI 2019

Summary (Q/A)

- Why charmonium: heavy quark system can probe nucleon gluonic distribution
- Why at threshold: anomaly terms coming from high twists (vanish at high energy)
- Why at threshold: LHCb pentaquarks are there
- Why with GlueX: highest energy (χ_{c1}), full coverage for charged and neutral particles (χ_{c1} , $\Delta J/\psi$ final state), possibly using linear polarization (P_c(4380))
- What is needed: nothing or higher luminosity (depending on results from other experimenst)
- How: high threshold on calorimeter sum; turn off (lower HV) on inner detectors and low energy tagger hodoscopes
- What is needed: electron/pion separation
- How: TRD in forward direction