Threshold J/v photoproduction with GlueX at Jefferson Lab

Lubomir Pentchev for the GlueX collaboration

Why study J/ψ near threshold photoproduction

- Poorly covered by old measurements
- 12 GeV CEBAF at JLab high intensity and right energy
- GlueX coherent Bremsstrahlung peak right above the threshold – improved statistics at the very important point
- Sensitive to proton gluonic content at high x:

Why: J/ ψ threshold photoproduction and the mass of the proton

Fig. 1. Forward J/ψ photoproduction data compared to our results with (*solid line*) and without (*dashed line*) the real part of the amplitude; the dotted line shows the real part alone. The curves were obtained using a scaling PDF [4].

Reflects the gluon distribution in the nucleon:

Kharzeev et al. Eur. Phys. C9 (1999) – perturbative calculations using gluon PDFs

The real part of the amplitude (dominates at low energies) is critically important – contains the conformal (trace) anomaly, related to the fraction of the nucleon's mass arising from gluons.

Why: LHCb petaquarks in s-channel production

 Also because of the LHCb pentaquarks - DIRECT relation – if they exist they should be seen in s-channel photoproduction:

- V.Kubarovsky and M.B.Voloshin, PRD 92.031502 (2015).
- M.Karliner and J.Rosner, arXiv: PLB 752, 329 (2016).
- A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

Hall D at 12GeV CEBAF (JLab, VA USA)

- Photon energy tagged by scattered electron ~ 0.1% resolution
- Photon beam collimated at 75m, <25 μrad
- Intensity: ~ 2 10⁷ 5 10⁷ γ/sec above J/ψ threshold (8.2 GeV) total ~68 pb⁻¹ in 2016-2017 runs

GlueX detector

2T-solenoid, LH target Tracking (FDC,CDC), Calorimetry (BCAL,FCAL), Timing (TOF,SC)

- Hermetic detector: 1 120° polar and full azimuthal acceptance
- Tracking: $\sigma_p/p \sim 1 5\%$ Calorimetry: $\sigma_E/E \sim 6\%/\sqrt{E} + 2\%$

J/ψ event

Exclusive reaction $\,\gamma p \to J/\psi p \to e^+e^-p$

Di-electron mass spectrum

Di-electron mass spectrum

Electron/pion separation using E(calorimetry)/p(tracking)

10

Preliminary results: t-dependence

- Cornell at 11 GeV 1.25±0.20 GeV⁻²
 - Gluex at 10-11.8 GeV 1.487±0.33 GeV⁻²
 - SLAC t-slope at 19 GeV 2.9±0.3 GeV⁻²

Proton Gluonic Form Factor

- *Frankfurt and Strikman PRD66 (2002)* suggested tdependence defined by the proton gluonic FF
 - Explains t-slope change with energy (due to t_{min} and t-range dependence) in wide energy range: FNAL <E>=100 GeV SLAC 13-21 GeV Cornell 11 GeV GlueX 10-11.8 GeV

Using VMD $(\gamma \rightarrow J/\psi)$ one can study $J/\psi p \rightarrow J/\psi p$

 $F(t) \sim \frac{1}{(1-t/m_{2a}^2)^4}$

Preliminary results: beam energy dependence

Using F(t) to calculate total cross-section from the SLAC $d\sigma/dt$ at t_{min}

Cornell data: horizontal errors represent acceptance

Preliminary results: comparison to theory

Brodsky at.al (2001) fit of the GlueX data ONLY, using F(t) as t-dependence

Kharzeev et al (1999) absolute (factor 2-3 uncertainty) perturbative calculations using gluon PDFs - related to the gluonic contribution to the mass of the proton

J/ψ cross-section and pentaquark predictions

A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

2%BR P_c(4450) 5/2+ 2%BR P_c(4450) 3/2-

Based on simple analysis can set $(3\sigma \text{ separation})$ limit on the BR Pc(4450) \rightarrow J/ ψ p of ~2% for 3/2⁻ and even lower for 5/2⁺ hypothesis

Systematic:

- t-s channel interference: model used assumes
 Pomeron exchange imaginary amplitude, while
 Kharzeev et.al predicts
 domination of real part
- Pc(4380) not included in the analysis

t vs E γ unbinned distribution for J/ ψ events

^{–3.5} ^D dots – GlueX data

color – model prediction from JPAC for 2%BR P_c(4450) 5/2⁺

A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

- Density of data points proportional to flux and efficiency
- No significant variations of flux (E_γ>9 GeV) and efficiency
- ~20% of dots background and accidentals

Summary

- JLab 12GeV accelerator has UNIQUE opportunity (high intensity, correct energy, polarized beam) to study J/ ψ photo-production right above the threshold (E_y=8.2 GeV) up to 12 GeV
- First measurements that extend down to the threshold can be used to study the production mechanism; related to the fraction of the nucleon's mass arising from gluons
- Preliminary cross-section results suggest domination of 3-gluon exchange at the threshold
- Preliminary t-differential cross-section (together with world data) supports the dipole form of the t-dependence allowing to study the Proton Gluonic Form Factor
- The results show domination of the t-channel and no evidence for the LHCb pentaquark. Can set a limit for Pc(4450)→J/ψp BR at a few percent level

Addressing several issues/questions Matt: old preliminary vs new results

- Up to 10GeV similar
- >10GeV ~20% higher
 - within claimed
 systematics 30%
 (19% J/psi to BH
 efficiency)
- Ver.3 factor of 2.2 more statistics and only ~60% of ver.2 appears in ver.3
- BH range change 1.5-2.5 (ver2) 2-2.5 (ver3)

Addressing several issues/questions: Elton: CDC "hole" runs

Correction small except last point:

- Only 2016
- BH 32 -> 19 events
- J/psi 32 -> 25 events
- Statistically similar changes
- 3% of CDC channels affected

Addressing several issues/questions Mark D.: efficiency dependence on t-slope

Addressing several issues/questions Ryan: method, quality of the fits, width fluctuations

FIG. 28: Yields from Figs.25,26,27 estimated with different methods: simultaneous fit of signal and accidental distributions using extended binned weighted likelihood with *RooFit* (red), same as before but fit the difference (black), fit of the difference using χ^2 fit with *root* (blue). ²¹

Addressing several issues/questions Ryan: method, quality of the fits, width fluctuations

Ryan: method, quality of the fits, width fluctuations

FIG. 43: Fits in 8 bins of beam energy using Method (II)

Back-ups