Threshold J/ψ production at GlueX

PRESENTED TO

The Glue Collaboration

IN RECOGNITION OF THE FIRST OBSERVATION OF CHARMONIUM

Lubomir Pentchev for the GlueX collaboration

WITH THE UPGRADED 12 GEV CEBAF BEAM AT JEFFERSON LAB

FEBRUARY 16, 2017

Robert D. Mo. Koonen

DEPUTY DIRECTOR FOR SCIENCE AND TECHNOLOGY THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY

Why study J/ψ near threshold photo-production

- J/ψ photo-production near threshold poorly covered by previous old measurement
- Look for threshold enhancement: sensitive to proton gluonic content (high x); other interesting effects expected near threshold
- Hall D is the only hall with E_{γ} >11 GeV needed to allow continuity from the high energy data; only in 2016 we had >11.5 GeV
- GlueX coherent peak right above the threshold improved statistics at the very important point

two-gluon exchange

Why study J/ψ near threshold photo-production

• Also because of the LHCb pentaquarks - DIRECT relation – if they exist they should be seen in s-channel photoproduction:

- V.Kubarovsky and M.B.Voloshin, PRD 92.031502 (2015).
- M.Karliner and J.Rosner, arXiv: PLB 752, 329 (2016).
- A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

Hall D layout

- Photon energy tagged by scattered electron ~ 0.1% resolution
- Photon beam collimated at 75m, <25 μrad
- Intensity: ~ 2 10^7 5 $10^7 \gamma$ /sec above J/ ψ threshold (8.2 GeV) total ~50 pb⁻¹ in 2016-2017 runs

Tagged fluxes

Fluctuations in flux coming from tagger efficiency, but canceled in normalized yields

GlueX detector

2T-solenoid, LH target Tracking (FDC,CDC), Calorimetry (BCAL,FCAL), Timing (TOF,SC)

- Hermetic detector: 1 120° polar and full azimuthal acceptance
- Tracking: $\sigma_p/p \sim 1 5\%$ Calorimetry: $\sigma_E/E \sim 6\%/\sqrt{E} + 2\%$

J/ψ event

Exclusive reaction $\,\gamma p \to J/\psi p \to e^+e^-p$

Electron/proton separation using E(calorimetry)/p(tracking)

Suppression factor of ~5000 by E/p cuts (2σ) on both leptons

Electron/pion separation using E(calorimetry)/p(tracking)

9

M(e⁺e⁻) spectrum

Shown actual yields and MC - NO normalization applied

• BH simulations from R.Paremuzyan, based on:

 Berger, E., Diehl, M. & Pire, B. Eur. Phys. J. C (2002) 23: 675.

$M(e^+e^-)$ spectrum - ϕ

J/ψ cross-section – preliminary results

SLAC results calculated from $d\sigma/dt(t=t_{min})$ using t-slope of 2.9±0.3 GeV⁻² (measured at 19 GeV)

Cornell data:

- t-slope 1.25±0.2 GeV⁻²
- horizontal errors represent acceptance

J/ψ cross-section – preliminary results

- Theory gives only shapes of the curves
- Fit to the data with two parameters - the amplitudes of 2- and 3gluon exchange
- Data near threshold consistent with 3-gluon exchange

J/ψ cross-section and pentaquark predictions

A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

t vs E γ unbinned distribution for J/ ψ events

 $\int_{1.8}^{2} \frac{1}{4} \frac{1}{4} dots - GlueX data$

color – model prediction from JPAC for 3%BR P_c(4450) 5/2⁺

A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

- Density of data points proportional to flux and efficiency
- No significant variations of flux (E_γ>9 GeV) and efficiency

My messages to the user's community

- JLab 12GeV accelerator has UNIQUE opportunity (high intensity, correct energy, polarized beam) to study J/ ψ photo-production right above the threshold (E_y=8.2 GeV) up to 12 GeV
- Reaching the MAXIMUM BEAM ENERGY is very important to ensure consistency with the measurements in the high energy region.
- Pion background requires at least 10³ suppression and much more to study BH continuum
- Preliminary GlueX cross-sections near thresholds are higher than expected from the two-gluon exchange extrapolation of old data
- The results show domination of the t-channel and no evidence for the LHCb pentaquark. Can set a limit for $Pc(4450) \rightarrow J/\psi p$ BR at a several percent level

Back-ups

t vs E γ unbinned distribution for J/ ψ events

dots – GlueX data

color – model prediction from JPAC for $P_c(4450)$ 5/2⁺

A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

- Density of data points proportional to flux and efficiency
- No significant variations of flux (E_γ>9 GeV) and efficiency

J/ψ cross-section – preliminary results

M(e⁺e⁻) spectrum

