

GlueX collaboration:

"First measurement of near-threshold J/ ψ exclusive photoproduction off the proton"

arXiv:1905.10811 (May 26) submitted to PRL

J/ψ total cross-section

- Brodsky et al.: $\sigma(E_{\gamma})$ depending on number of hard-gluons exchanged.
- *Kharzeev et al.*: real part of the amplitude dominates, contains scale anomaly term related to the mass of the proton arising from gluons.

GlueX data falls toward threshold less steeply than 2g exchange model

J/ψ differential cross-section and proton gluonic FF

Y. Hatta, A. Rajan, and D.-L. Yang, https://arxiv.org/abs/1906.00894:

Proton gluonic FF: "..these are nothing but the gravitational form factors A_a , B_a , C_a , \overline{C}_a "

$$\langle P'|(T_g)^{\mu}_{\mu}|P\rangle = \langle P'|\left(\frac{\beta(g)}{2g}F^a_{\mu\nu}F^{\mu\nu}_a + m\gamma_m\bar{\psi}\psi\right)|P\rangle$$

$$= \bar{u}(P')\Big[A_gM + \frac{B_g}{4M}\Delta^2 - 3\frac{\Delta^2}{M}C_g + 4\bar{C}_gM\Big]u(P)$$

A_g, *B_g*, *C_g* were recently calculated on lattice: *P. E. Shanahan and W. Detmold, https://arxiv.org/abs/1810.04626*

LHCb pentaquarks

- J^P of P_c states not determined yet
- Molecules (most likely), but compact states or rescattering effects not excluded

State	$M \;[{ m MeV}\;]$	$\Gamma \ [{\rm MeV}]$	(95% CL)	\mathcal{R} [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ~ {}^{3.7}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} ~ {}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

5

LHCb pentaquarks and J/ψ photo-production

 If LHCb pentaquarks exist they should be seen in s-channel photoproduction (free of rescattering effects in the final state):

- M.Karliner and J.Rosner, arXiv: PLB 752, 329 (2016).
- A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

P_c(4457)

J/ψ cross-section: model-dependent upper limits

	$\mathcal{B}(P_c^+ \to J/\psi p)$	Upper Limits, $\%$	$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$\rightarrow J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_{c}^{+}(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_{c}^{+}(4457)$	2.7	3.8	2.9	3.9

Upper limits at 90% confidence level

J/ψ cross-section: model-dependent upper limits

Upper limits at 90% confidence level

3.7

1.2

2.9

4.6

2.3

3.8

 $P_{c}^{+}(4312)$

 $P_c^+(4440)$

 $P_{c}^{+}(4457)$

2.9

1.6

2.7

4.6

1.8

3.9

$Br(P_c \rightarrow J/\psi p)$ calculations: pentaquark models

model	$\Gamma_{P_c}, \mathrm{MeV}$	$\Gamma_{J/\psi p}, {\rm MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03(4450)	0.14% (4450)	$1/2^{-}$ (4312)	M.Eides and V.Petrov
(OPE)				$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$				$3/2^{-}$ (4457)	
hadro-	-(4312)	suppr.(4312)	suppr. (4312)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	25%~(4440)	$1/2^{-}$ (4440)	and M.Eides, V.Petrov
	16.2(4457)	11 (4457)	68% (4457)	$3/2^{-}$ (4457)	M.Polyakov,arXiv:1904.1161
compact	_	suppressed	suppressed	$3/2^{-}$ (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				$5/2^+$ (4457)	
molecular	9.8* (4312)	6.5	66%	$1/2^{-}$ (4312)	ZH. Guo and J.Oller
(ERE)	20.6* (4440)	16.3	79%	$1(3)/2^{-}$ (4440)	Phys.Lett.B793, 144
$\Sigma_c \bar{D}^{(*)}$	6.4* (4457)	3.5	55%	$1(3)/2^{-}$ (4457)	
molecular	15.2 (4306)	4**	26%	$1/2^{-}$ (4306)	C.Xiao, J.Nieves, E.Oset,
(DSE)	23.4 (4453)	18**	77%	$1/2^{-}$ (4453)	arxiv:1904.01296
$\Sigma_c \bar{D}^{(*)}$	3.0(4453)	2**	67%	$3/2^{-}$ (4453)	Phys.Rev.D88, 056012

* The total width measured by LHCb has been used.

** The width calculated from coupling constants.

$Br(Pc \rightarrow J/\psi p)$ calculations: molecular vs hadrocharmonium

model	$\Gamma_{P_c}, { m MeV}$	$\Gamma_{J/\psi p}, \mathrm{MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03 (4450)	0.14% (4450)	$1/2^{-}$ (4312)	M.Eides and V.Petrov
(OPE)				$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$				$3/2^{-}$ (4457)	
hadro-	-(4312)	suppr.(4312)	suppr. (4312)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	25% (4440)	$1/2^-$ (4440)	and M.Eides, V.Petrov
	16.2 (4457)	11 (4457)	68% (4457)	$3/2^-$ (4457)	M.Polyakov,arXiv:1904.1161

$Br(Pc \rightarrow J/\psi p)$ calculations: compact diquark

compact	_	suppressed	suppressed	$3/2^{-}$ (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				$5/2^+$ (4457)	

Diquarks in color anti-triplet states

The bound-state effect in (uC)-diquark reduces the probability to form $C\overline{C}$ -state

$Br(Pc \rightarrow J/\psi p)$ calculations: pentaquark models

model	$\Gamma_{P_c}, \mathrm{MeV}$	$\Gamma_{J/\psi p}, \mathrm{MeV}$	$\mathcal{B}(I)$	$P_c \rightarrow J/c$	$\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03 (4450)	0.1	4% (44	50)	$1/2^{-}$ (4312)	M.Eides and V.Petrov
(OPE)						$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$						$3/2^{-}$ (4457)	
hadro-	- (4312)	suppr.(4312)	sup	opr. (43	12)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	23	5% (444	0)	$1/2^{-}$ (4440)	and M.Eides, V.Petrov
	16.2(4457)	11 (4457)	68	8% (445	7)	$3/2^{-}$ (4457)	M.Polyakov,arXiv:1904.116
compact	_	suppressed	s	uppresse	ed	$3/2^{-}$ (4312)	A.Ali, A.Parkhomenko
diquark						$3/2^+$ (4440)	Phys.Lett.B793, 365
				\bigwedge		$5/2^+$ (4457)	
molecular	9.8* (4312)	6.5		66%		$1/2^{-}$ (4312)	ZH. Guo and J.Oller
(ERE)	20.6* (4440)	16.3		79%		$1(3)/2^{-}$ (4440)	Phys.Lett.B793, 144
$\Sigma_c \bar{D}^{(*)}$	6.4* (4457)	3.5		55%		$1(3)/2^{-}$ (4457)	
molecular	15.2 (4306)	4**		26%		$1/2^{-}$ (4306)	C.Xiao, J.Nieves, E.Oset,
(DSE)	23.4 (4453)	18**		77%		$1/2^{-}$ (4453)	arxiv:1904.01296
$\Sigma_c \bar{D}^{(*)}$	3.0(4453)	2**		67%		$3/2^{-}$ (4453)	Phys.Rev.D88, 056012

* The total width measured by LHCb has been used.

** The width calculated from coupling constants.

- J/ ψ is suppressed by 10⁻³, VMD coupling dominated by ρ and ω
- How to explain J/ψ photoproduction at high energies with such suppression???
- Other papers (J. Phys. G4 (1978) 989, Phys. Rev. Lett. 38 (1977) 263) suggest some moderate suppression (2-3)

Lower limits on $Br(P_c \rightarrow J/\psi p)$ from data?

GlueX

Conclusions

- JLab 12GeV accelerator has unique opportunity (high intensity, correct energy, polarized beam) to study J/ ψ photo-production right above the threshold (E_y=8.2 GeV) up to 12 GeV
- Do not see evidence for LHCb pentaquarks and set model-dependent limits on Br(P_c \rightarrow J/ ψ p) at several percent level, and limits on the $\sigma_{max}(gp \rightarrow Pc)$ Br(P_c \rightarrow J/ ψ p) at nb level
- This allows us to discriminate between different pentaquark models. Our results exclude the hadrocharmonium model but not the molecular one
- Extraction of the JP numbers of the penaquark states (by LHCb) will certainly reduce many ambiguities in their interpretation
- Higher statistics results from the other halls will allow to reduce the upper limits or find positive signals
- Depending on these results further experiments might be needed, including polarization observables

Back-ups

J/w total cross-section: t-channel

JPAC model Pomeron model that includes also tensor part:

A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev, A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).