VMD validation in vector meson production (C. Roberts)

ector Meson Elastic lectric Form Factor

In three panels at right, plot G_{E}^{V} as functions of $x=Q^{2} / m_{V}^{2}$

$$
\text { for } V=u \bar{d}, u_{s} \overline{\mathrm{a}}_{s}, u_{c} \overline{\mathrm{~d}}_{c}
$$

Analysis predicts a zero in each case Importantly, as the current-mass of the system's valencequarks is increased, the x-location of the zero, x_{z}, moves toward $x=0$

\mathcal{V}	ρ	ρ_{s}	ρ_{c}
x_{z}	$10.6(3)$	$10.1_{(7)}^{(9)}$	$4.5_{(1.0)}^{(2.5)}$

Shift is initially slow; but the pace increases as one leaves the domain upon which emergent mass is dominant and enters into that for which explicit (Higgs-connected) mass generation overwhelms effects deriving from strong-QCD dynamics.

$$
x=Q^{2} / M_{V}
$$

VMD validation in vector meson production (C. Roberts)

Vector Meson Dominance

> Existence of a zero in $G_{E}^{V}(x) \Rightarrow$ validity domain for single-pole VMD model is circumscribed.
$>$ Notwithstanding this, $G_{E}^{V}(x)$ is the best case for VMD:

- must agree with the computed result in some neighbourhood of $x=-1$
- and, by charge conservation, also in the vicinity of $x=0$.

J/ Ψ : VMD fails beyond 4\% virtuality

- VMD approximation is fair on a reasonable domain for light-quark systems
- However, VMD is poor for states in which the Higgs-mechanism of mass generation is dominant; hence, likely yields erroneous estimates for off-shell properties of $\bar{c} c$ states \& more massive

$$
2 \frac{G_{E}(x)-(1+x)^{-1}}{G_{E}(x)+(1+x)^{-1}} \quad x=Q^{2} / M_{V}
$$

