J/ψ analysis status

- Exclusive reaction: $\gamma p \rightarrow e^+e^-p$
- Only 2017 (both LI and HI) data in this presentation
- New reconstruction/analysis:
 - Default analysis cuts
 - Kinematic fit with loose χ^2 cut (<5000)
 - Initial E/p>0.7 cut for electrons
 - Accidentals subtracted using one bunch peak on each side (so far)
 - All other cuts are discussed
 - Identical cuts used for data and MC
- Same version used for MC with random hits included
- Only Bethe-Heitler and J/ ψ so far (using old ϕ MC)
- In this presentation MC means: simulation results times cross-section times luminosity – NO NORMALIZATION to data

Data vs MC: M(e⁺e⁻)

- Good agreement for M(e⁺e⁻)>1 GeV, over two magnitudes
- Only J/ ψ cross-section fitted to the data
- σ(φ)=550±70 nb
- BH calculated (discussed later)

2017 data vs MC

p/E cuts - BCAL

- Data vs BH MC simulations (M(e+e-)>1.5 GeV)
- Additional smearing (from 4.3 to 5.8%) applied to MC to match data width and mean
- All other cuts applied (discussed later)
- Background fitted with polynomial (quadratic)
- Estimated background contribution for $-3\sigma/+2\sigma$ cut: 26%

p/E cuts - FCAL

- Data vs BH MC simulations (M(e+e-)>1.5 GeV)
- Additional smearing (from 3.2 to 4.5%) applied to MC to match data width and mean
- All other cuts applied (discussed later)
- Background fitted with polynomial (quadratic)
- Estimated background contribution for $-3\sigma/+2\sigma$ cut: 16% FCAL 2σ cuts

CDC dE/dx cut

• Old analysis and using integral

New analysis and using peak amplitude

BCAL pre-shower and other cuts

- BCAL presh. * $sin(\theta) > 30 \text{ MeV}$
- θ(e+,e-)>2 deg
- p(e+,e-)>0.4 GeV
- abs(M(p,π+/π-)-1.23)>0.1 GeV

 $6 \sigma cut$

 $4 \sigma cut$

 $2 \sigma cut$

Varying p/E cut

BH MC without/with random hits

Bethe-Heitler Simulations

Generator /author	Based on	Proton FFs	Phase space	Singularities	Implemeted for HallD
Rafayel Paremuzyan	Berger et.al* formulas	yes	flat	Acceptance cut	yes
Mike Dugger	Feynman diag. (numerical)	no	weighted	Propagator cut	yes
Richard Jones	Feynman diag. (numerical)	yes	weighted	Propagator cut	no
Marie Boer	Berger at.al* formulas?	yes	flat	Acceptance cut	no

* Berger, E., Diehl, M. & Pire, B. Eur. Phys. J. C (2002) 23: 675. https://doi.org/10.1007/s100520200917

Bethe-Heitler Simulations – proton FFs

- Hall B (Rafayel) vs Hall D(Mike) $E_{\gamma} = 11 \text{ GeV}, \theta_{e} > 0.01$
- Proton FFs explain differences
- Right plot: t dependence at M(e+e-)=1 GeV
- t_{min} increases with M(e+e-)

Bethe-Heitler Simulations

• Hall B vs Berger et.al paper

• $s = 25 \text{ GeV}^2$ Q'2 = 5 GeV²

Bethe-Heitler Simulations

• Three BH generators: using dipole FFs

 $E_{\gamma} = 11 \text{ GeV} \quad 40 < \theta < 140 \quad 0.04 < |t| < 3.5 \text{ GeV}^2$

Bethe-Heitler Simulations - uncertainties

From Marie B.:

- Singularities for $\theta_{cm(e+e-)} \rightarrow 0$ and π
- Additional uncertainties from TCS contribution
- Estimated ~20%(?) uncertainties

Outlook

- BH is the only option we can do normalization in bins of energy (needed for the highest energy point!)
- Need to finalize cuts
- Run reconstruction/analysis over 2016 data
- Expect something like this:

- Estimate the pentaquark BR limits
- Estimate systematics

From Sean

Model Fitting

- Want to test different production models and provide accurate determination of the confidence intervals of their parameters
- Implementing unbinned fitter
 - Performing toy MC tests to verify accuracy
- Plan: Finalize fitting code and extract expected limits before applying to data

$$rac{d\sigma}{dt} \propto rac{1}{E_{\gamma}^2} A^2 e^{2b(t-t_0)} \left(rac{s-s_{
m thr}}{s_0}
ight)^{2lpha(t)}$$

with

 $\alpha(t) = \alpha_0 + \alpha' t$: Pomeron A : Normalization b : t -Slope

Total cross section:

$$\sigma = \int\limits_{t_{\max}}^{t_{\min}} \frac{d\sigma}{dt} dt$$

JPAC Model via A. Austregeslio

1

From Sean

Model Fitting

- Example: JPAC model
 - $-N(J/\psi) = 300$
 - $-M(P_c) = 4.45 \text{ GeV}$
 - Γ(P_c) = 0.039 GeV
 - $-\operatorname{spin}(P_c) = 5/2$
 - $-Br(P_c \rightarrow J/\psi + p) = 3\%$
 - Statistical uncertainties only

