J/ψ update

Why it is important?

- JLab 12GeV accelerator has UNIQUE opportunity (high intensity, correct energy, polarized beam) to study J/ ψ photo-production right above the threshold (E_{γ}=8.2 GeV) up to 12 GeV – poorly (If at all) covered by previous old measurements
- Look for threshold enhancement: sensitive to proton gluonic content (high x); other interesting effects expected near threshold
- Hall D is the only hall that can have E_γ>11 GeV needed to allow continuity from the high energy data; so far only in 2016 we had data >11.5 GeV – when will be the next time we can have 12 GeV?
- GlueX coherent peak right above the threshold improved statistics at the very important point

Why it is important?

Also because of the LHCb pentaguarks - DIRECT relation – if they exist they should be seen in s-channel photoproduction:

 $\sigma \sim BW(\Gamma_{Pc}, M_{Pc}) * BR(P_{c} - \gamma p) * BR(P_{c} - \gamma p)$ $BR(P_c \rightarrow \gamma p) \sim \Gamma(J/\psi \rightarrow \ell^+ \ell^-) * BR(P_c \rightarrow J/\psi p) \quad (VMD)$

2

Strategy for normalizing J/ψ x-section

data vs MC

MC, ϕ , or Bethe-Heitler x-section?

- MC not yet ...
- φ too far in invariant mass, different kinematics/detectors involved, but 10MeVwidth peak can be separated from background
- BH pros e.m. process can be calculated exactly (apart from singularity regions, involves proton FFs (known), and higher order processes - TCS), more statistics, energy dependence similar to J/ψ - the only way to normalize 11.75 data point from 2016
- BH cons continuum containing
 background; resonances (ρ') should be
 excluded inv. mass region 2-2.5 GeV.

Pion background suppression

BCAL 10, 12.8 +/- 0.7% background

Pion background suppression – pion sample

pions in BCAL

Pion background suppression

2.2 not corrected 2 bg subtracted 1.8 1.6 1.4 1.2 0.8 $\overline{\mathbf{O}}$ 2 3 N (p/E<mean +No) BH/J/ψ data 40 not corrected 35 bg subtracted 30 25 20 15 10 븅 2 з 4 5 6 N (p/E<mean +No) BH/¢ data 9 not corrected 8 bg subtracted 7 6 5 4 з ö 2 з 4 5 6 1 N (p/E<mean +No)

BH data/MC

BCAL pre-sjower, dE/dx, and other cuts

- CDC dE/dx>2.6 keV/cm
- BCAL presh.*sin(θ)> 30 MeV
- θ(e+,e-)>2 deg
- p(e+,e-)>0.4 GeV
- abs(M(p,π+/π-)-1.23)>0.1 GeV

Bethe-Heitler Simulations

Generator /author	Based on	Proton FFs	Phase space	Singularities	Implemeted for HallD
Rafayel Paremuzyan	Berger et.al* formulas	yes	flat, dynamic	Acceptance cut	yes
Mike Dugger	Feynman diag. (numerical)	no	weighted	Propagator cut	yes
Richard Jones	Feynman diag. (numerical)	yes	weighted	Propagator cut	no
Marie Boer	M.Boer at.al** numerical	yes	flat	Acceptance cut	no

- *Berger, E., Diehl, M. & Pire, B. Eur. Phys. J. C (2002) 23: 675. <u>https://doi.org/10.1007/s100520200917</u>
- **M.Boer, M.Guidal, M.Vaderhaeghen, EPJA 51 (2015) no.8, 103.

Bethe-Heitler Simulations – proton FFs

- Hall B (Rafayel) vs Hall D(Mike) $E_{\gamma} = 11 \text{ GeV}, \theta_e > 0.01$
- Proton FFs explain differences
- Right plot: t dependence at M(e+e-)=1 GeV
- t_{min} increases with M(e+e-)

Bethe-Heitler Simulations - comparison

• Three BH generators: using dipole FFs

 $E_{\gamma} = 11 \text{ GeV} \quad 40 < \theta < 140 \quad 0.04 < |t| < 3.5 \text{ GeV}^2$

Normalization – E dependence

Normalization – t dependence

2016

BH 1.5<M(e⁺e⁻)<2.5 GeV

Efficiencies

- 2016 efficiency higher than 2017
- dE/dx cut mostly BH and J/ ψ
- Why BH higher than J/ψ very important to understand

J/ ψ analysis in bins of t-t_{min}

Cornell: 1.25 +/- 0.2 GeV⁻² at E_{γ} = 11 GeV

SLAC: 2.9 at E_{γ} = 19 GeV

J/ψ analysis in bins of E

J/ψ x-section corrections (2016+2017)

J/ψ cross-section vs E

From Sean

Model Fitting

- Want to test different production models and provide accurate determination of the confidence intervals of their parameters
- Implementing unbinned fitter
 - Performing toy MC tests to verify accuracy
- Plan: Finalize fitting code and extract expected limits before applying to data

$$rac{d\sigma}{dt} \propto rac{1}{E_{\gamma}^2} A^2 e^{2b(t-t_0)} \left(rac{s-s_{
m thr}}{s_0}
ight)^{2lpha(t)}$$

with

$$lpha(t) = lpha_0 + lpha't$$
 : Pomeron
 A : Normalization
 b : $t -$ Slope

Total cross section:

$$\sigma = \int_{t_{\rm max}}^{t_{\rm min}} \frac{d\sigma}{dt} dt$$

JPAC Model via A. Austregeslio

From Sean

Model Fitting

- Example: JPAC model
 - $N(J/\psi) = 300$
 - M(P_c) = 4.45 GeV
 - $\Gamma(P_c) = 0.039 \text{ GeV}$
 - spin(P_c) = 5/2
 - Br(P_c \rightarrow J/ ψ + p) = 3%
 - Statistical uncertainties only

Analysis outlook

- Normalization to Bethe-Heitler is the only option now to get the cross-section using 2016 and 2017 data
- Waiting for reconstruction/analysis of 2016 data (both golden and non-golden runs) to be included in the final data set
- Apart from the problem of 2016/2017 efficiency, we have to understand:
 - Effect of the random hits on the efficiencies
 - BH/J/ ψ relative efficiency
 - Reason for "noise" at high t in 2017 data
 - Cut out singularity regions (mostly outside acceptance) in BH calculations
- Possible changes/improvements:
 - Extend BH region down to 1.5 GeV how argue about ρ' contribution
 - Remove dE/dx cut gain ~30% statistics, but π contamination increases to 40+/-10%
 - Include higher t in the t-slope fit?
- Unbinned analysis in (E,t) plane how to get normalization for each point, background subtraction,

Back-ups

LHCb Pentaquarks

 $\Lambda_{b} \rightarrow K^{-}(J/\psi p)$

Pc(4380): Γ=205 MeV J^P=3/2⁺⁽⁻⁾ Pc(4450): Γ=39 MeV J^P=5/2⁻⁽⁺⁾

Interpretations:

- (charmed baryon) (anti-charmed meson) molecule ($\overline{D}^*\Sigma_c$)
- Resonance in terms of quark degrees of freedom

- Kinematic effects: threshold effect ($\chi_{c1}~p)$, ATS

Phtotoproduction of LHCb Pentaquarks

 $\sigma \sim BW(\Gamma_{Pc}, M_{Pc}) * BR(P_c -> \gamma p) * BR(P_c -> J/\psi p)$ BR(Pc-> \gamma p) ~ $\Gamma(J/\psi -> \ell^+ \ell^-) * BR(P_c -> J/\psi p)$ (VMD)

 $\sigma \sim BR^2(P_c ->J/\psi p)$

Upper limit for $BR(P_c \rightarrow p J/\psi)$

- If preliminary results hold (~ factor of 2) we can put upper limit of $BR(P_c-J/\psi p) < 2\%$ or less
- What about lower limit?

LHCb has measured: BR($\Lambda_{\rm b} \rightarrow {\rm K}^{-}{\rm J}/\psi p$) = 3.2 10⁻⁴ BR($\Lambda_{\rm b} \rightarrow {\rm K}^{-}{\rm P_c}$)*BR(P_c->J/ ψp) = 1.3 10⁻⁵

If BR(P_c->J/ ψ p) too small then BR($\Lambda_{\rm b}$ -> K⁻ + J/ ψ p) << BR($\Lambda_{\rm b}$ -> K⁻ +!(J/ ψ p)) (M.Karliner and J.Rosner, PRL 115 122001)