J/ψ update

- Using full 2016 statistics and 20 files per run from 2017
- 2017 data about 20% of data set presented here
- 10% (high intensity runs) not well calibrated (S.Dobbs)
- Require kin.fit converges with χ^2 <200, and θ_e > 2⁰
- Using 2016 flux, corrected for the different endpoint for 2017 data
- Absolute flux not used, instead normalization to φ x-section

 Combined statistics allowed for mass peak fitting in bins of energy and t

J/ψ mass fits in bins of energy

φ mass fits in bins of energy

φ x-sec. vs beam energy

GlueX data normalized to world data fit (red line) - gives estimate of the luminosity, that is used for the x-section calculation

Reconstructing p, e⁺, e⁻ momenta from angles (2016 data)

Reconstructing p, e⁺, e⁻ momenta from angles

NO kinematic fit used

Require energy conservation to +/- 200 MeV and Δr (vertex) < 4 cm

Momenta calculated from angles

J/ψ analysis in bins of t

 $E_{\gamma} > 8.2 \text{ GeV}$

t-slope of Cornell data 1.25 +/- 0.2 GeV⁻² at E_{γ} = 11 GeV

GlueX result (total): 1.57 +/- 0.31 GeV⁻²

GlueX result for $E_{\gamma} > 9.7$ GeV: 1.73 +/- 0.30 GeV⁻²

slope

• Three-gluon exchange dominates

 Two-gluon exchange dominates

t-slope of Cornell data 1.25 GeV⁻²

- γ Be -> e⁺e⁻ X
- Bad mass resolution (~100 MeV)
- Beam energy calculated from e⁺e⁻assuming elastic reaction – can explain the no-energydependence of the cross-section?

13

Cornell results

- FIG. 2. $t t_{\min}$ distributions for c-c events in two mass regions. The solid curves represent the sum of the contributions from Bethe-Heitler pairs (B-H), n-n and n-c feedthrough (FT), and for (a) the fit to the ψ cross section described in the text.
- FIG. 3. The reconstructed photon energy distribution for the ψ events with Bethe-Heitler pairs and feedthroughs subtracted. The solid line is the expected distribution for a cross section $d\sigma/dt = 0.9 \exp(1.2t)$. The dashed line is for $d\sigma/dt = 0.144(k - 8.2)^2 \exp(1.2t)$ nb/ GeV².

- Steep acceptance with the beam energy
- t-slope from the plot (~1.65) contradicts the value in the paper (1.25 GeV⁻²)

LHCb Pentaquarks

 $\Lambda_{b} \rightarrow K^{-}(J/\psi p)$

Pc(4380): Γ=205 MeV J^P=3/2⁺⁽⁻⁾ Pc(4450): Γ=39 MeV J^P=5/2⁻⁽⁺⁾

Interpretations:

- (charmed baryon) (anti-charmed meson) molecule ($\overline{D}^*\Sigma_c$)
- Resonance in terms of quark degrees of freedom
- Kinematic effects: threshold effect ($\chi_{c1}~p)$, ATS

Phtotoproduction of LHCb Pentaquarks

 $\sigma \sim BW(\Gamma_{Pc}, M_{Pc}) * BR(P_c -> \gamma p) * BR(P_c -> J/\psi p)$ BR(Pc-> \gamma p) ~ $\Gamma(J/\psi -> \ell^+ \ell^-) * BR(P_c -> J/\psi p)$ (VMD)

 $\sigma \sim BR^2(P_c ->J/\psi p)$

J/ψ x-section in finer bins of beam energy

 J/ψ recosntruction efficiency

- Fine bins in E_{γ} : 190 MeV corresponds to 39 MeV in W, the P_{c} (4450) width
- Background subtracted assuming uniform (with energy) distribution normalized to the total background events

Upper limit for $BR(P_c \rightarrow p J/\psi)$

- If preliminary results hold (~ factor of 2) we can put upper limit of BR(P_c->J/ψp) < 2% or less
- What about lower limit?

LHCb has measured: BR($\Lambda_{\rm b} \rightarrow {\rm K}^{-}{\rm J}/\psi$ p) = 3.2 10⁻⁴ BR($\Lambda_{\rm b} \rightarrow {\rm K}^{-}{\rm P_c}$)*BR(P_c->J/ ψ p) = 1.3 10⁻⁵

If BR(P_c->J/ ψ p) too small then BR($\Lambda_{\rm b}$ -> K⁻ + J/ ψ p) << BR($\Lambda_{\rm b}$ -> K⁻ +!(J/ ψ p)) (M.Karliner and J.Rosner, PRL 115 122001)

Conclusions

- Despite analyses are preliminary, using ~35-40% of the total statistics, very unlikely these conclusions will change: the effects we observe are much bigger than the expected systematics:
- 1. GlueX cross-section is much higher than old data/fits with theoretical curve
- 2. GlueX and Cornell results can't be reconcile and they result in different predictions for the reaction mechanism near threshold
- 3. We can set upper limit for the pentaquark BR(P_c(4450)->p J/ ψ) at level of 1-2%

Due to the expected high impact of the results:

Requirements:

- Need total flux and agreement with ϕ ->K⁺K⁻ and ϕ -> $\pi^+\pi^-\pi^0$
- Need agreement with Bethe-Heitler (two MC models simulated by Sean)
- Need some confidence in efficiency simulations (like comparing MC vs data with different cuts, studying electron/proton tracking efficiencies, etc.)
- Need to improve FCAL and BCAL resolution at high electron energies
- Need to analyze both the whole spring 2016 and spring 2017 data with the same reconstruction software version before final analyses
- Writing analysis paper (simultaneously)

Organization:

- Forming two independent groups using different analysis codes (above some level)?
- Blind data in the energy range around pentaquark? (Mark D.)