Update on J/ ψ cross-section

- Study of the systematics:
- normalization systematics by comparing the flux normalized yields for BH and J/ ψ , for different run periods and reconstruction versions
- Systematics related to relative (BH/J/ ψ) MC efficiency
- Pion suppression
- BH calculations: TCS interference with BH, numerical issues
- $-\rho'$ contribution to the continuum
- (expecting input from you)
- Path towards publication
- What's remaining to be done
- Anticipated timeline

Update on J/ ψ cross-section

- Using latest reconstruction/analysis of all the data: simrecon 2.20.1, REST production ver5 (2016) and ver2 (2017)
- Cross-section normalization to Bethe-Heitler (BH) continuum in 1.5-2.5 GeV invariant mass
- Further improvements: finer (5 MeV) binning, simplified cuts for better modeling (exclude dE/dx cut)

J/ψ cross-section – preliminary results

SLAC results calculated from $d\sigma/dt(t=t_{min})$ using t-slope of 2.9±0.3 GeV⁻² (measured at 19 GeV)

Cornell data:

- t-slope 1.25±0.2 GeV⁻²
- horizontal errors represent acceptance

J/ψ cross-section – preliminary results

- Theory gives only shapes of the curves
- Fit to the data with two parameters - the amplitudes of 2- and 3gluon exchange
- Data near threshold consistent with 3-gluon exchange

Normalization systematics – BH yields

BH yields corrected for π contamination in bins of energy

- BH simulations from R.Paremuzyan, based on:
- Berger, E., Diehl, M. & Pire, B. Eur. Phys. J. C (2002) 23: 675.

Normalization systematics – J/ ψ vs BH

 J/ψ new reconstruction

BH new reconstruction

Change of the yields (2016 to 2017) for J/ ψ and BH - same with 18% error (J/ ψ /BH=0.95±0.17)

Normalization systematics – J/ ψ vs BH

 J/ψ old reconstruction

BH old reconstruction

Change of the yields (2016 old recon. to 2017) for J/ ψ and B - same with 18% error (J/ ψ /BH=1.12±0.20)

Systematics on BH - J/ ψ relative efficiency

BH efficiency – energy vs t

J/ψ efficiency – energy vs t

Systematics on BH - J/ ψ relative efficiency

Cornell: 1.25 +/- 0.2 GeV⁻² at $E_g = 11$ GeV

SLAC: 2.9 at
$$E_{\gamma} = 19 \text{ GeV}$$

Systematics on BH - J/ ψ relative efficiency

Fit of the absolute deviations gives 9% error

Systematics on BH – ρ ' effect

Fit of the absolute deviations gives 9% error

Systematics on BH – ρ ' effect

Ratio = 1.027±0.049 5% error

Electron/proton separation using p(tracking)/E(calorimetry)

- 36±1.2% contamination in 1.5-2.5 GeV M(e⁺e⁻) region with 2σ cut on electrons
- BH yields corrected in bins of energy – percentage slightly varies with energy
- Background shape from pion sample (p/E anti-cuts)
- Contribution to systematics
 ~5% based on different
 pion shapes

J/ψ cross-section - systematics so far

Systematic error from	Estimate (%)
J/ ψ to BH relative yield	18
BH x-section calculations	10
Pion contamination in BH	5
ρ' contribution to BH	5
t-efficiency	9
Total (<mark>so far</mark>)	23.6

Remaining to be done (my list)

- REST production and analysis of 2016 (first) and 2017 data, using latest sim-recon
- Generate MC sets of data for each period for BH and J/ ψ (and ϕ ?) with the latest sim-recon.:
 - For J/ ψ with two different t-slopes 1.25 GeV⁻² (Cornell) and 4 GeV⁻² (close to BH t-slope)
 - Including Richard's generator for BH
- Repeating the whole J/ψ analysis
- Further work on systematics based on the new results
- Setting limit on pentaquark BR (Sean, Alex A.)
 - Procedure with bins
 - Unbinned analysis:
 - so far JPAC model implemented (Alex A.), need to add flux and efficiency to the pdf
 - how to take into account background (accidental, physics etc.)?
 - effect of the t-channel model (JPAC) might be significant need other models, but how to take into account s/t-channel inerference
- Writing the analysis notes (in parallel)
- Writing the paper (in parallel)

Timeline

- Finishing REST production and analysis launch by the end of August (fall 2018 run starts at that time!)
- Results ready by end of September
- Analysis notes and paper ready by end of October and submitted to the review committee
- Paper submitted for publication by the end of the year

Flux normalized yields (BH)

Invariant mass spectrum

Now using 5 MeV bins

Invariant mass spectrum

χ² / ndf

p0

p1

p2

рЗ

p4

1.05

З

M(e⁺e⁻), GeV

2.5

Now using 5 MeV bins

62.38 / 65

 153 ± 12.8

 1.017 ± 0.001

 0.009621 ± 0.000951

736 ± 58 φ's

 σ = 9.6 MeV

1.1

3.5

 7.397 ± 0.172

 -2.709 ± 0.163

Invariant mass spectrum

Electron/proton separation using p(tracking)/E(calorimetry)

- Suppression factor of ~5000 by p/E cuts only
- Different for BCAL and FCAL; depends on energy