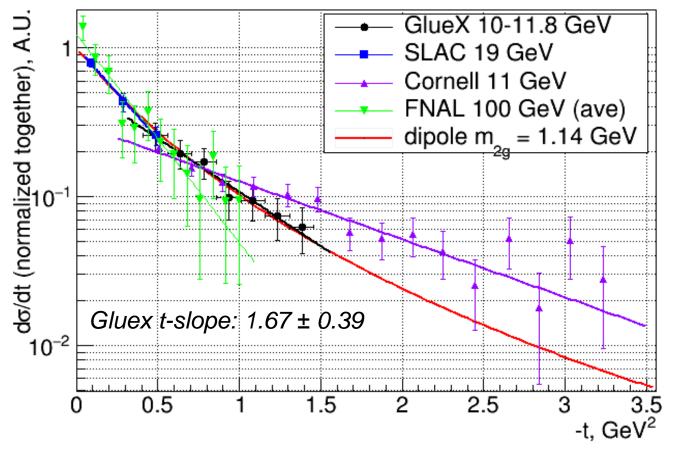


$$\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$$

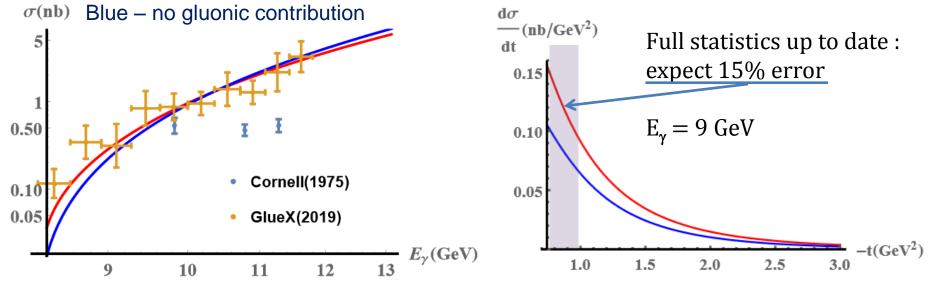

- Tagged photon beam, 0.2% energy resolution
- Electrons identified by E/p
- Kinematic fit: 13 MeV mass resolution
- ~470 J/ψ: 25% of statistics accumulated up to date
- Using VMD $(\gamma \rightarrow J/\psi)$ one can study $J/\psi p \rightarrow J/\psi p$
- Look for LHCb P_c : $\gamma p \rightarrow Pc \rightarrow J/\psi p$

J/ψ total cross-section

- Brodsky et al.: $\sigma(E_{\gamma})$ depending on number of hard-gluons exchanged.
- Kharzeev et al.: real part of the amplitude dominates, contains scale anomaly term related to the mass of the proton arising from gluons.

J/ψ differential cross-section and proton gluonic FF

gluonic form factor (dipole form in analogy with the e.-m. FF):

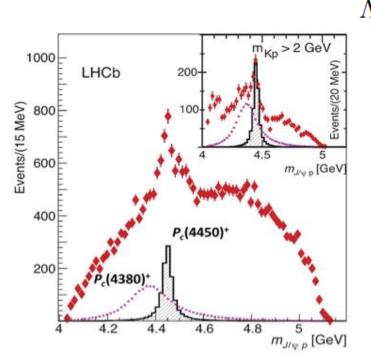

$$F(t) \sim 1/(1 - t/m_0^2)^2$$

Frankfurt and Strikman PRD66 (2002)

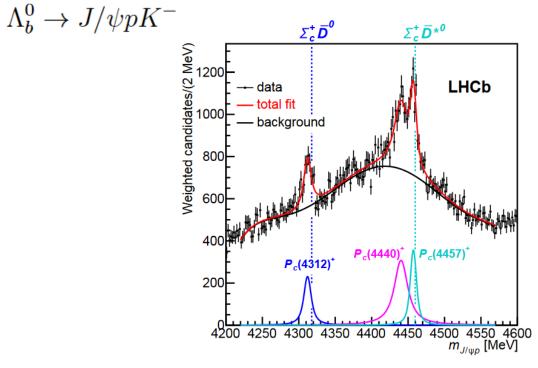
	e.m. FF	gluonic FF
reaction	$ep \rightarrow ep$	$J/\psi p \to J/\psi p$
transverse size of probe	0	<< 1 fm
effective mass scale m_0	0.84 GeV (vector meson)	$\sim 1.1 \; GeV \; \text{(two-gluon mass)}$

Near-threshold J/ ψ cross-sections and gluonic contribution to the mass of the proton

Red – maximal contribution from gluons, favored by GlueX data


Y. Hatta, A. Rajan, and D.-L. Yang, arXiv:1906.00894:

Proton gluonic FF: "..these are nothing but the gravitational form factors A_g , B_g , C_g , \bar{C}_g "

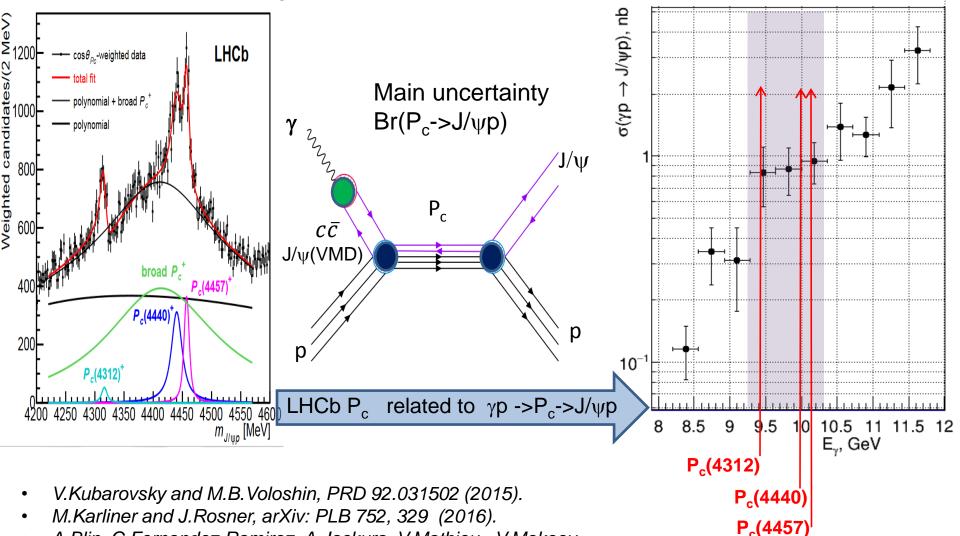

$$\langle P'|(T_g)^{\mu}_{\mu}|P\rangle = \langle P'|\left(\frac{\beta(g)}{2g}F^a_{\mu\nu}F^{\mu\nu}_a + m\gamma_m\bar{\psi}\psi\right)|P\rangle$$
$$= \bar{u}(P')\left[A_gM + \frac{B_g}{4M}\Delta^2 - 3\frac{\Delta^2}{M}C_g + 4\bar{C}_gM\right]u(P)$$

 A_g , B_g , C_g were recently calculated on lattice: *P. E. Shanahan and W. Detmold, arXiv:1810.04626*

LHCb pentaquarks

Phys. Rev. Lett., 115,072001 (2015)

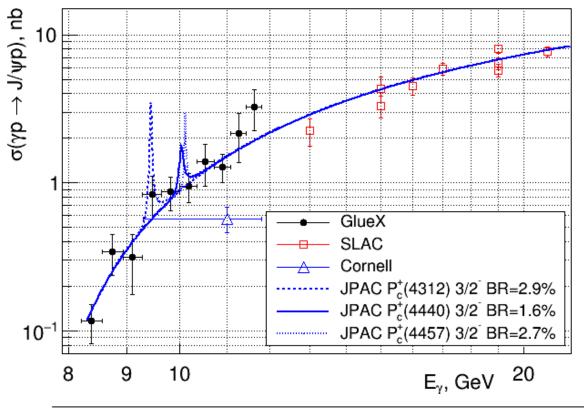
Phys. Rev. Lett. 122, 222001 (2019)


6

- J^P of P_c states not determined yet
- Molecules (most likely), but compact states or rescattering effects not excluded

State	$M \; [\mathrm{MeV} \;]$	$\Gamma \ [\mathrm{MeV}]$	(95% CL)	R [%]
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$	(< 27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+~8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

LHCb pentaquarks and J/ψ photo-production

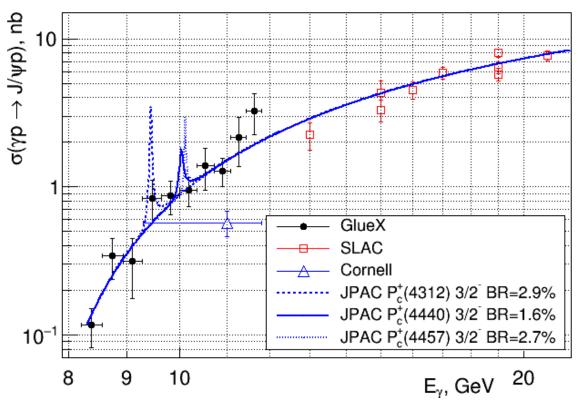

 If LHCb pentaquarks exist they should be seen in s-channel photoproduction (free of rescattering effects in the final state):

A.Blin, C.Fernandez-Ramirez, A.Jackura, V.Mathieu, V.Mokeev,

A.Pilloni, and A.Szczepaniak, PRD 94,034002 (2016).

J/ψ cross-section: model-dependent upper limits

Assuming:


- all P_c independent J^P = 3/2⁻¹
- s-channel model:

$$\sigma(\gamma p \rightarrow P_c \rightarrow J/\psi p) \approx$$
0.35 µb Br²(P_c \rightarrow J/\psi p) (2J+1)

 JPAC model for t-channel: Pomeron and tensor part extracted at high energies

	$B(P_c^+ \to J/\psi p)$ Upper Limits, %		$\sigma_{\max} \times \mathcal{B}(P_c^+)$	$J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_c^+(4457)$	2.7	3.8	2.9	3.9

J/ψ cross-section: model-dependent upper limits

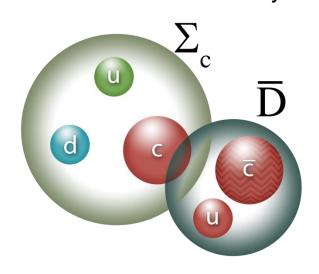
Assuming:

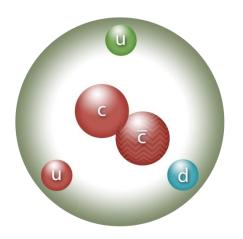
- all P_c independent $J^P = 3/2^-$
- s-channel model: $\sigma(\gamma p \to P_c \to J/\psi p) \approx \sqrt{0.35 \ \mu b \ Br^2(P_c \to J/\psi p) \ (2J+1)}$
- JPAC model for t-channel: Pomeron and tensor part extracted at high energies

	$B(P_c^+ \to J/\psi p)$) Upper Limits,	$\% \sigma_{\max} \times \mathcal{B}(P_c^+) $	$\rightarrow J/\psi p$) Upper Limits, nb
	p.t.p only	total	p.t.p only	total
$P_c^+(4312)$	2.9	4.6	3.7	4.6
$P_c^+(4440)$	1.6	2.3	1.2	1.8
$P_c^+(4457)$	2.7	3.8	2.9	3.9

$Br(P_c \rightarrow J/\psi p)$ calculations: pentaquark models

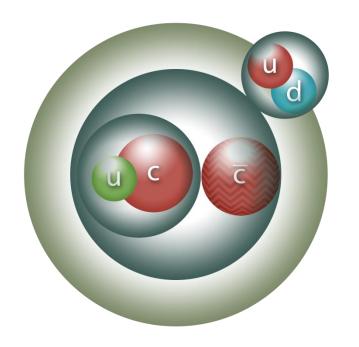
model	Γ_{P_c} , MeV	$\Gamma_{J/\psi p}$, MeV	$B(P_c \to J/\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03 (4450)	0.14% (4450)	1/2- (4312)	M.Eides and V.Petrov
(OPE)				$1/2^-$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$				$3/2^-$ (4457)	
hadro-	- (4312)	suppr.(4312)	suppr. (4312)	1/2+ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	25% (4440)	$1/2^-$ (4440)	and M.Eides, V.Petrov
	16.2 (4457)	11 (4457)	68% (4457)	$3/2^-$ (4457)	M.Polyakov,arXiv:1904.1161
compact	_	suppressed	suppressed	3/2- (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				5/2+ (4457)	
molecular	9.8* (4312)	6.5	66%	1/2- (4312)	ZH. Guo and J.Oller
(ERE)	20.6* (4440)	16.3	79%	$1(3)/2^{-}$ (4440)	Phys.Lett.B793, 144
$\Sigma_c \bar{D}^{(*)}$	6.4* (4457)	3.5	55%	$1(3)/2^{-}$ (4457)	
molecular	15.2 (4306)	4**	26%	1/2- (4306)	C.Xiao, J.Nieves, E.Oset,
(DSE)	23.4 (4453)	18**	77%	$1/2^-$ (4453)	arxiv:1904.01296
$\Sigma_c \bar{D}^{(*)}$	3.0(4453)	2**	67%	$3/2^-$ (4453)	Phys.Rev.D88, 056012


^{*} The total width measured by LHCb has been used.


^{**} The width calculated from coupling constants.

Br(Pc \rightarrow J/ ψ p) calculations: molecular vs hadrocharmonium

model	Γ_{P_c} , MeV	$\Gamma_{J/\psi p},{ m MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03 (4450)	0.14% (4450)	1/2- (4312)	M.Eides and V.Petrov
(OPE)				$1/2^-$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$				$3/2^-$ (4457)	
hadro-	- (4312)	suppr.(4312)	suppr. (4312)	$1/2^+$ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	25% (4440)	$1/2^-$ (4440)	and M.Eides, V.Petrov
	16.2 (4457)	11 (4457)	68% (4457)	$3/2^-$ (4457)	M.Polyakov,arXiv:1904.1161
hadro-	44.8 (4440)	11 (4440)	25% (4440)	$1/2^+$ (4312) $1/2^-$ (4440)	and M.Eides, V.Petro

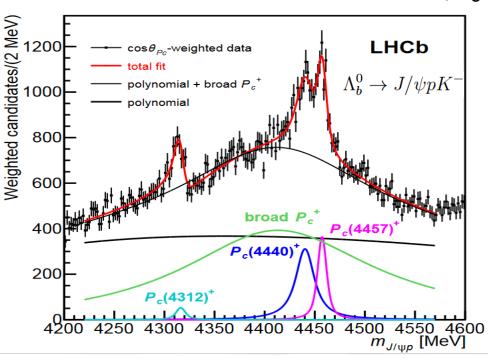

all subsystems in color singlet states

Br(Pc \rightarrow J/ ψ p) calculations: compact diquark

model	Γ_{P_c} , MeV	$\Gamma_{J/\psi p}, \mathrm{MeV}$	$\mathcal{B}(P_c \to J/\psi p)$	J^P	reference
compact	_	suppressed	suppressed	$3/2^-$ (4312)	A.Ali, A.Parkhomenko
diquark				$3/2^+$ (4440)	Phys.Lett.B793, 365
				$5/2^+$ (4457)	

diquarks in color anti-triplet states

The bound-state effect in (uC)-diquark reduces the probability to form $C\overline{C}$ -state


Br(Pc \rightarrow J/ ψ p) calculations: pentaguark models

model	Γ_{P_c} , MeV	$\Gamma_{J/\psi p}$, MeV	B (.	$P_c \rightarrow J/c$	$\psi p)$	J^P	reference
molecular	21.7 (4450)	0.03 (4450)	0.	14% (445	50)	1/2- (4312)	M.Eides and V.Petrov
(OPE)						$1/2^{-}$ (4440)	Phys.Rev.D98, 114037
$\Sigma_c \bar{D}^{(*)}$						$3/2^{-}$ (4457)	
hadro-	- (4312)	suppr.(4312)	su	ppr. (43	12)	1/2+ (4312)	same as above
charmonium	44.8 (4440)	11 (4440)	2	5% (4440	0)	$1/2^{-}$ (4440)	and M.Eides, V.Petrov
	16.2 (4457)	11 (4457)	6	8% (445)	()	$3/2^{-}$ (4457)	M.Polyakov,arXiv:1904.116
compact	_	suppressed	s	uppresse	d	$3/2^-$ (4312)	A.Ali, A.Parkhomenko
diquark						$3/2^+$ (4440)	Phys.Lett.B793, 365
				\bigcap		$5/2^+$ (4457)	
molecular	9.8* (4312)	6.5		66%		$1/2^-$ (4312)	ZH. Guo and J.Oller
(ERE)	20.6* (4440)	16.3		79%		1(3)/2- (4440)	Phys.Lett.B793, 144
$\Sigma_c \bar{D}^{(*)}$	6.4* (4457)	3.5		55%		$1(3)/2^{-}$ (4457)	
molecular	15.2 (4306)	4**		26%		$1/2^{-}$ (4306)	C.Xiao, J.Nieves, E.Oset,
(DSE)	23.4 (4453)	18**		77%		$1/2^{-}$ (4453)	arxiv:1904.01296
$\Sigma_c \bar{D}^{(*)}$	3.0(4453)	2**		67%		$3/2^-$ (4453)	Phys.Rev.D88, 056012

^{*} The total width measured by LHCb has been used.

^{**} The width calculated from coupling constants.

Lower limits on Br($P_c \rightarrow J/\psi p$) from data?

X. Cao, J-P. Dai arXiv:1904.06015

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

$$\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$$

$$\mathcal{B}(\Lambda_b \to P_c^+ K^-) < 10^{-3}$$
 at the level of $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$

(model dependent 2-4%)
$$> \mathcal{B}(P_c^+ \to J/\psi p) > 0.05\%$$
 GlueX

Lower limits on Br($P_c \rightarrow J/\psi p$) from data?

X. Cao, J-P. Dai arXiv:1904.06015

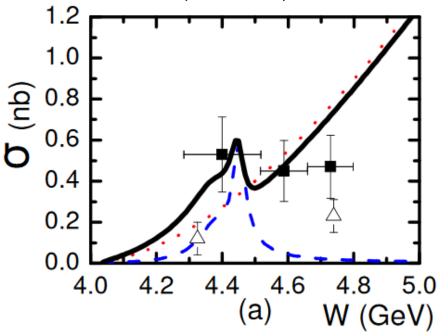
$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

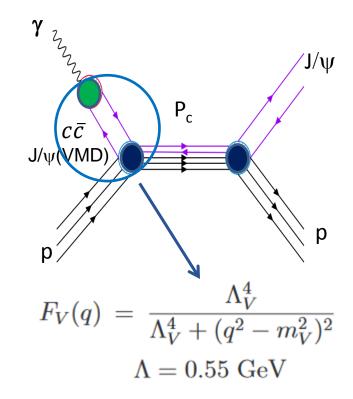
$$\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$$

$$\mathcal{B}(\Lambda_b \to P_c^+ K^-) < 10^{-3}$$

at the level of $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-)$

(model dependent 2-4%)
$$> \mathcal{B}(P_c^+ \to J/\psi p) \star 0.05\%$$
 GlueX


Conclusions


- JLab 12GeV accelerator has unique opportunity (high intensity, correct energy, polarized beam) to study J/ ψ photo-production right above the threshold (E_{ν}=8.2 GeV) up to 12 GeV
- Do not see evidence for LHCb pentaquarks and set model-dependent limits on Br(P_c → J/ψp) at several percent level, and limits on the σ_{max}(gp→Pc)xBr(P_c → J/ψp) at nb level
- This allows us to discriminate between different pentaguark models
- Extraction of the J^P numbers of the penaquark states (by LHCb) will certainly reduce many ambiguities in their interpretation
- Expect results with higher statistics (x4) from GlueX and the other Halls: will allow to reduce the upper limits or find positive signals

Back-ups

Attempts to suppress VMD coupling

- J/ ψ is suppressed by 10⁻³, VMD coupling dominated by ρ and ω
- How to explain J/ψ photoproduction at high energies with such suppression???
- Other papers (J. Phys. G4 (1978) 989, Phys. Rev. Lett. 38 (1977) 263) suggest some moderate suppression (factor of 2-3)