CDC dE/dx for e/π separation

Justin Stevens 7.21.17

CDC dE/dx: p<0.2 GeV

CDC dE/dx: 0.2<p<0.4 GeV

CDC dE/dx: 0.4<p<0.6 GeV

CDC dE/dx: 0.6<p<0.8 GeV

CDC dE/dx: 0.8<p<1.0 GeV

CDC dE/dx: 1.0<p<1.5 GeV

CDC dE/dx: 1.5<p<2.0 GeV

CDC dE/dx: 2.0<p<3.0 GeV

CDC dE/dx correction: 0.2<p<0.4 GeV

Before Correction

Pion θ (degrees)

Electron θ (degrees)

Electron θ (degrees)

After θ -dependent correction p/ π separation also improves!

After θ -dependent correction p/ π separation also improves!

Summary

- * Correction to θ-dependent CDC dE/dx provided by Lubomir
- * dE/dx is now ~constant vs θ, so the same cut could be applied in data and MC
 - * Likely need some MC tuning to get resolution right
- * Improved p/π separation due to better resolution
- * Where should we implement this correction to the measured dE/dx?
 - * Analysis library (ie. REST) or DSelector (ie. TTrees)