First measurement of near threshold J/¢) photoproduction*

(GlueX Collaboration)
(Dated: October 5, 2017)

We report on the first measurement of the J/v¢ photoproduction that extends down to the thrshold.

I. GENERAL REMARKS

The paper describes the anlysis of the data from the
spring 2016 GlueX run and low intensity part from the
2017 data (so far). We look at the exclusive reaction:

vp — pete” (1)

in the region of the ete™ invariant masses above 0.9 GeV,
that includes ¢, J/v, as well as Bethe-Heitler (BH) pro-
cess as a continuum.

The idea of the presented analyses is to use the ¢ pho-
toproduction and, possibly, BH cross-section to normal-
ize the J/v cross-section, thus eliminating uncertainties
from factors like luminosity and common detector effi-
ciencies. To make sure that the relative detector effi-
ciency in the invariant mass region between 1 and 3 GeV
is under control we aim to match the data and simu-
lations over the whole region. While for the ¢ and J/4
peaks we can estimate the signal and the background (by
fiting them separately), the problem is that we cannot do
the same for the BH continuum. The main background
comes from the pions that are suppressed by applying %
cuts, energy measured in the calorimeteris over the mo-
mentum recosntructed from the tracking. By making the
cuts more restrictive we compare the yealds for BH with
those of ¢ and J/v and thus decide about the cut values
at which the BH signal dominates the background.

II. EVENT SELECTION
A. Initial cuts

The exclusive reaction 1 is identified using DReaction
factory (from DAnalysis library) using the following ini-

* Thanks to everybody who contributed to this work

tial loose cuts:

1. Missing mass squared, Mss:  abs(Mpiss) <
0.25GeV? (cut applied before forming particle com-

binations).
2. Missing transverse momentum, Ptoiss:
abs(Ptpmiss) < 0.5GeV  (cut applied before

forming particle combinations).

3. Timing cuts: on the three final state particle the
time from BCAL and FCAL to be within 2.5ns
from the RF-time, and in case of electron/positron
from TOF, 1ns from the RF-time.

4. Energy (from calorimeter) over momentum (from
tracking), E/p: E/p > 0.6 for electrons and
positrons.

B. Electron/positron identification

The elctrons and positrons are identified using E/p
cuts from the enrgy measured in BCAL and/or FCAL.
The widths and mean values of the E/p distributions
have been estimated from the experimental data (Fig. ??
and ?? ). for events in the J/4 peak by applying all other
cuts (described later) except E/p for the corresponding
particle and calorimeter. In case of BCAL additional cut
is applied using pre-shower energy Ep c—shower
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(b) p/E distribution for BCAL from MC in 1 — 2 GeV momentum

(b) p/E distribution for BCAL from MC in 3 — 4 GeV momentum
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(a) p/E distribution for FCAL from the data in 4 — 5 GeV
momentum range.
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(a) p/E distribution for FCAL from the data in 7 — 8 GeV
momentum range.
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(b) p/E vs p distribution for FCAL from MC.
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(a) Di-electron invariant mass distribution with 30 p/E cuts on (b) Di-electron invariant mass distribution with 20 p/FE cuts on
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