

JANA:
JLab Reconstruction
Framework

David Lawrence, Jefferson Lab

Revision 0.2

 - 2 -

D. Lawrence Page 2 12/5/06

 - 3 -

D. Lawrence Page 3 12/5/06

Table of Contents

TABLE OF CONTENTS ... 3
TABLE OF FIGURES ... 5
INTRODUCTION ... 7
OBTAINING AND BUILDING JANA .. 8
QUICK START.. 10
DATA FACTORIES AND DATA OBJECTS ... 11

FACTORY TAGS ... 12
Using Tags ... 12
How JANA Implements Tags... 14

IDENTIFIERS.. 15
Using identifiers... 16

EVENT PROCESSORS... 18
THE JAPPLICATION CLASS... 19

STANDARD COMMAND LINE OPTIONS... 19
USING JAPPLICATION IN SINGLE EVENT MODE.. 20

CONFIGURATION PARAMETERS ... 21
USING CONFIGURATION PARAMETERS ... 21

ACCESSING THE DETECTOR GEOMETRY ... 24
ACCESSING THE CALIBRATION DATABASE ... 24
INTERFACING WITH ROOT .. 25
EVENT SOURCES... 26

THE JEVENTSOURCE CLASS ... 26
Constructor: ... 26
GetEvent:.. 27
FreeEvent: .. 27
GetObjects: .. 27

THE JEVENTSOURCEGENERATOR CLASS.. 28
Description: ... 28
CheckOpenable(string source): .. 28
MakeJEventSource: ... 29

SAVING OUTPUT TO A FILE .. 30
MULTI-THREADED EVENT PROCESSING ... 31

USING MULTIPLE THREADS .. 31
HOW JANA IMPLEMENTS THREADS ... 33

PLUGINS .. 36
DEBUGGING .. 38
INDEX.. 39

 - 5 -

D. Lawrence Page 5 12/5/06

Table of Figures

FIGURE 1: FACTORY FLOWCHART. REQUESTS FOR DATA CAN BE THOUGHT OF LIKE ORDERS TO A FACTORY.
THE FACTORY MUST EITHER “MANUFACTURE” THE DATA, OR RETRIEVE IT “FROM STOCK”. 11

FIGURE 2: TRACKING FLOW CHART. THE DTRACKCANDIDATE FACTORY CAN GET MONTE CARLO DATA
FROM EITHER THE DTRACKHIT FACTORY WITH THE "MC" TAG (LEFT) OR THE DTRACKHIT FACTORY
WITH AN EMPTY TAG "" (RIGHT). ... 14

FIGURE 3: RUNNING A JANA PROGRAM WITHOUT MODIFYING ANY CONFIGURATION PARAMETERS RESULTS
IN A MESSAGE INDICATING ONLY DEFAULT VALUES ARE BEING USED... 23

FIGURE 4: CONFIGURATION PARAMETER OUTPUT USING -PPRINT... 23
FIGURE 5: CONCEPTUAL VIEW OF HOW JANA OBJECTS ARE RELATED WHEN RUNNING MULTIPLE THREADS.

THE JEVENTLOOP AND VARIOUS JFACTORY OBJECTS ARE ALL SPECIFIC TO A THREAD WHILE THE
JAPPLICATION, JEVENTSOURCECODA, AND JEVENTPROCESSOR OBJECTS ARE USED BY ALL THREADS.
... 34

 - 7 -

D. Lawrence Page 7 12/5/06

Introduction

The JLab Reconstruction framework or JANA is a software package written in C++ that
provides the mechanism by which various pieces of the reconstruction software are brought
together to fully reconstruct the data. This is motivated in large part by the number of
independent detector subsystems that must be processed in order to reconstruct an event.
Each of the subsystems’ reconstruction packages performs a similar set of actions (in no
particular order):

 Read raw data in
 Obtain calibration constants from database
 Modify behavior through configuration parameters
 Provide processed data out

The JANA framework provides a standard way to pass data between packages. Data is
passed using STL1 vectors containing const pointers to data objects. By using STL, JANA
adheres to a standard in the C++ programming language. By using templates, JANA
ensures a level of type safety so fewer errors result and those that do are often caught at
compile time. By using const pointers, JANA ensures only the producer of the data can
change it (packages that take it as input see it as read-only).

If any of the terminology above scares you because you are unfamiliar with templates, STL
vectors, etc… then don’t be. One of the most important design goals for JANA is to be easy
for the user to well, …use. A few simple examples in the Quick Start section should get you
going. The bulk of this manual is dedicated to documenting details about how JANA ‘s
features are implemented.

1 Standard Template Library

 - 8 -

D. Lawrence Page 8 12/5/06

Obtaining and Building JANA

The JANA source code can be obtained from the JANA web page at:
http://www.jlab.org/~davidl/JANA. The most recent source however, is kept in a
subversion repository on the 12gev_phys group disk (/group/12gev_phys/svnroot) at
Jefferson Lab which can be accessed through the URL https://phys12svn.jlab.org/repos. To
access it, you need an account on the JLab CUE2. Follow these steps to checkout and
compile the code:

 Create working directory: All of the source code and binaries will reside in this

directory. It can be named anything and placed anywhere. For example:
/home/davidl/JANA.

 Set JANA_HOME environment variable: The JANA_HOME variable

should be set to the working directory you just made. The makefile system3 uses this to
find the source code and place the resulting binaries. For example4:

setenv JANA_HOME /home/davidl/JANA

 Checkout the source: Go into your working directory and checkout the code by

doing the following:

cd $JANA_HOME
svn co https://phys12svn.jlab.org/repos/trunk/src

Note that this assumes the account you're issuing the command from has the same
username as your JLab CUE account. If not, prefix host part of the URL with your JLab
account name followed by an `@'5

 Compile the library: Go into the src/JANA directory and run gmake:

cd src/JANA
make install

This will build the JANA library and place it in ${JANA_HOME}/lib/${OSNAME} where
$OSNAME is the uname of the system you're working on (e.g Linux). The install step will
also create the directory ${JANA_HOME}/include/JANA and copy all of the header files
into it.

2 contact the JLab Computer Center if you need don't already have such an account
3 See GlueX-doc-473 on the BMS system
4 I use tcsh in these instructions. I'll leave it to bash users to translate where appropriate.
5 e.g. svn co https://joe@phys12svn.jlab.org/repos/trunk/src

 - 9 -

D. Lawrence Page 9 12/5/06

 Compile the debugging version of the library:

make DEBUG=yes install

A version of the JANA library will be built with debugging symbols and place it in
${JANA_HOME}/lib/${OSNAME} with the name libJANA_d.a .

 Compile the janadump program: Go into ${JANA_HOME}/src/janadump and run

make to build the janadump executable:

cd $JANA_HOME/src/janadump
make install

The janadump program is a program that will loop through events, dumping them contents
to the screen in an ASCII format that is easily human readable. This relies on the JFactory
objects’ toString() method being defined as janadump doesn’t know anything specific about
the objects themselves.

 - 10 -

D. Lawrence Page 10 12/5/06

Quick Start

 - 11 -

D. Lawrence Page 11 12/5/06

Data Factories and Data Objects

The JANA framework is built upon the idea of data factories. Figure 1 gives a flowchart
that illustrates the factory mechanism. The term factory comes from the mechanism used
by industry to fulfill requests for manufactured products. The general idea is this: When
data is requested from a factory (i.e. an order is placed) the factory’s stock is first checked
to see if the requested items already exist. In JANA, a factory only makes one type of
object, so if the objects have already been made for this event, const pointers to them are
passed back. Otherwise, it must manufacture (instantiate) the objects. The manufacturing
procedure itself needs first to get the “parts” from which to build its own objects. These
parts are objects produced by other factories. Eventually, one gets down to requesting
objects that are not produced by a factory but rather, originate from the data source.

Figure 1: Factory flowchart. Requests for data can be thought of l ike orders
to a factory. The factory must either “manufacture” the data, or retr ieve it
“from stock”.

There are two big advantages to the method:

1. Manufacture of data is only done “on demand” so CPU cycles are not wasted doing
reconstructed values that are never used.

2. Objects are “recycled” in that subsequent requests to the same factory are just given
pointers to the objects created in the first request.

 - 12 -

D. Lawrence Page 12 12/5/06

Factory Tags
It often occurs that more than one factory wants to output data objects of the same type.
For example: We have a PID6 factory that outputs a set of particle objects. Suppose there is
also a Kaon factory that outputs particles that are likely to be Kaons. The C++ object types
produced by both of these factories should be the same (e.g. DParticle). But how to
distinguish between the two factories? The solution is the factory Tag. A Tag is just a string
and it can be any value. All factories have a tag, but most just use the default empty string
(“”). In fact the only reason to use a tag is when another factory is already producing data of
the same type.

Tags are used to specify a specific factory. They only need to be unique among factories
that produce the same type of data objects. There are no built-in checks in JANA to ensure
that this is the case! Therefore, if two factories are added which produce the same data type
and have the same tag, then the first one added will always be used and the second will be
effectively ignored.

In the two following sections, usage of tags is discussed as well as how they are
implemented in JANA.

Using Tags
Using tags is easy. First, a factory needs to be “tagged”. This is done by simply adding a
const char* Tag() method to the factory class. The Tag() method is a virtual method in the
JFactory_base class. Without explicitly defining a Tag() method, the method defined in
JFactory_base is used which just returns an empty string. Here’s an example of a factory
class that has a tag:

class DMCTrackCandidate_factory_B:public JFactory<DMCTrackCandidate>{
 public:
 DMCTrackCandidate_factory_B ();
 ~ DMCTrackCandidate_factory_B (){};
 const string toString(void);
 const char* Tag(void){return "B";}
…
};

Notice that the name of the class has the tag appended with an underscore(_B). This is a
convention that helps identify the source files that make up a factory. As you can see, it can
lead to some very long class names. Adhering to a convention such as this, however, is well
worth it when it comes to maintenance of large coding projects.

It is also worth noting that if you use the mkfactory script, it will take an optional second
argument that specifies a tag for the factory. This is the easiest way to make a “tagged”
factory.

6 Particle IDentification

 - 13 -

D. Lawrence Page 13 12/5/06

Once you have a tagged factory, you’ll surely want to use it. To do this, simply add the tag
as an argument to the Get(…) call:

vector<const DMCTrackCandidate*> mctc;
eventLoop->Get(mctc, "B");

Factory tags can also be useful in development. For example, if you wanted to try a new
PID scheme, you could place it in a tagged factory that coexists with the old one. This
would allow you to compare output of the two schemes event by event.

Another place tags can be useful is when coupled with a configuration parameter to modify
the source from which a factory receives its data. For example, in a tracking package, there
are two ways in which Monte Carlo data can enter. One is by using the truth tags directly,
the other is the “normal” way, through the individual detector packages that present the
data as though it were real. Using the truth tags directly allows one to test the tracking
algorithm on pristine data and to more easily match up the truth information with the
tracking results. Using the other subsystems allows one to exercise the system under
conditions more closely related to that of real data. Figure 2 shows the tracking flow chart
for JLAB Hall-D that illustrates this. One can see that when processing Monte Carlo data,
the DTrackCandidate factory must decide whether to take its input from the untagged
DTrackHit factory or the one tagged “MC”. This can easily be controlled at run time via a
configuration parameter. The following listing demonstrates how:

// constructor
DTrackCandidate::DTrackCandidate(){

 DTRACK_HIT_TAG = “”; // DTRACK_HIT_TAG is a member of DTrackCandidate
 jparms.SetDefaultParameter(“TRK:DTRACK_HIT_TAG”, DTRACK_HIT_TAG);
…
}

// evnt
derror_t DTrackCandidate::evnt(JEventLoop *loop, int event_number){

 vector<const DTrackHit*> dtrackhits;
 loop->Get(dtrackhits, DTRACK_HIT_TAG);
…
}

The value of the configuration parameter TRK:DTRACK_HIT_TAG is used as the
factory tag when getting the DTrackHit. The default is to use the “real” data path, but if
one were to run any JANA program with a -PTRK:DTRACK_HIT_TAG=MC command
line option, the MC path would be used.

 - 14 -

D. Lawrence Page 14 12/5/06

Figure 2: Tracking flow chart. The DTrackCandidate factory can get Monte
Carlo data from either the DTrackHit factory with the "MC" tag (left) or the
DTrackHit Factory with an empty tag "" (r ight) .

When using tags in this way, always remember to make the default the behavior a novice
would expect.

How JANA Implements Tags
In the preceding section, the const char* Tag() method was described. This method is a
virtual method of the JFactory_base class that defaults to returning an empty string. There
are two places where the tag field is used to identify the factory. The first is in the
GetFromFactory() method in JEventLoop.h. This gets called from the Get() method (also
in JEventLoop.h). The tag gets passed into GetFromFactory() as a const char*. The code
that actually searches the list of factories for the one with the right type and tag is shown
below:

 - 15 -

D. Lawrence Page 15 12/5/06

 const char* className = T::className();
 vector<JFactory_base*>::iterator iter=factories.begin();
 JFactory<T> *factory = NULL;
 for(; iter!=factories.end(); iter++){
 const char *factory_name = (*iter)->dataClassName();
 if(factory_name == className){
 if(!strcmp((*iter)->Tag(), tag)){
 factory = (JFactory<T>*)*iter;
 break;
 }
 }
 }

The second place the tag can be applied is in a subclass of JEventSource. See the chapter
on event sources for more details. In a nutshell though, some event sources can supply
objects that were created by another JANA program. The objects would need to be stored
with the tag identifying the factory that created them. The GetFromFactory() method will
pass the tag into a call to GetFromSource() which eventually passes it to a call to the
JEventSourceXXX object’s GetObjects() method. There it can be used to extract objects of
the correct tag (and type) from the source. This is admittedly a little complicated, but this
design allows the use of object-seekable sources.

One word of caution: One of the concerns voiced when tags were added to JANA is that it
might open the door to “competing standards”. For example, someone does come up with
an alternative PID scheme and implements it in a tagged factory. The new scheme has
some advantages over the old so those in-the-know make use of it as a standard part of
their configuration while the rest of the collaboration uses the default. The point being that
if a tagged factory is used to develop an alternative that turns out to be better than the
current, then the new scheme needs to have it’s tag removed, and the old needs to either
have a tag added or be retired completely.

Identifiers
Every data object in JANA has a unique identifier attached to it. This is done through its
inheritance of the JObject class which has a member named id of type oid_t (for object
identifier type). The id is used to uniquely identify an object within an event and can be
used by one data object to refer to another. For example, an object representing a cluster in
a calorimeter would have a list of id s corresponding to the individual detector hits used to
make the cluster. Similarly, a calibrated data hit may have an oid_t member corresponding
to the raw hit from which it came. In general a data object will have its own id that others
can use to refer to it, and a custom set of oid_t s to refer to the objects from which it was
derived.

The value of the id data member of a JObject is initialized by the JObject constructor. If
the default constructor is used, id will be initialized to the object’s pointer (typecast as an
oid_t). The id should never be used as a pointer though since this is not guaranteed to
always be true. In particular, if the object is written to disk and read in later, the original id
will be preserved and will therefore NOT be the same as the pointer. Note that using the
pointer does not strictly guarantee uniqueness among JObjects of the event. This is because

 - 16 -

D. Lawrence Page 16 12/5/06

the factory writer has the freedom to set the value of id. Checking for uniqueness with the
creation of every JObject would incur an overhead that is considered unacceptable. Using
the JObject pointer will at least guarantee a unique value for every JObject for which the
factory author does not explicitly overwrite the value of id.

Using identifiers

To use an identifier, one first needs to include a data member in the definition of the class
that needs to refer to another object. For example, in the DTrackCandidate class there is a
data member called hitid that holds the id values for all of the DTrackHit objects that
comprise the candidate:

class DTrackCandidate:public JObject{
 public:
 HDCLASSDEF(DTrackCandidate);

 vector<oid_t> hitid; ///< ids of DTrackHit objects
 float x0,y0; ///< center of circle
 float z_vertex; ///< z coordinate of vertex
 float dphidz; ///< dphi/dz in radians per cm
 float q; ///< electric charge
 float p, p_trans; ///< total and transverse mom. in GeV/c
 float phi, theta; ///< theta and phi in radians
};

As the candidate is created, the ids of the DTrackHit objects are added to the list:

…
trackcandidate->hitid.push_back(trackhit->id);
…

Some methods are provided in JANA classes to help obtain pointers to the objects and the
factories that created them using the object’s id. In the most common case, one will have
the id of the desired object and a pointer to the JEventLoop object, but will not have a
pointer to the factory that created the desired object readily available. In this case, methods
in the JEventLoop object can be used to search through its factories and their objects until
the desired one is found. Most often, you will know the class of the desired object and so
the templated FindByID method can be used. In the following example, the pointer to a
DTrackHit object is obtained using the oid_t id.

const DTrackHit* trackhit = loop->FindByID<DTrackHit>(id);

This is the fastest7 way to search for the object pointer since the method can restrict its
search to only those factories that provide the specified data type.

7 Technically, if you have the pointer to the factory object already, it is faster to call the
GetByID method of that factory directly.

 - 17 -

D. Lawrence Page 17 12/5/06

If one wishes to obtain a pointer to the factory that produced the object of the given id,
then use the FindOwner method. This method will return a pointer to a JFactory_base
object which must be dynamic_cast<> if one wishes to use the methods of the subclass as
shown if the following example:

JFactory_base *fac = loop->FindOwner(id);
DTrackHit_factory *fac_th = dynamic_cast<DTrackHit_factory*>(fac);

The FindOwner method is overloaded to also accept a JObject pointer:

const DTrackHit* trackhit = loop->FindByID<DTrackHit>(id);
JFactory_base *fac = loop->FindOwner(trackhit);
DTrackHit_factory *fac_th = dynamic_cast<DTrackHit_factory*>(fac);

If you have the id of an object, but don’t know the specific subclass of it, you can still obtain
a pointer to it using the non-templated version of FindByID. This version is slower and will
search through every object of every factory until it finds the object with the given id.

const JObject* obj = loop->FindByID(id);

Lower level methods are also provided in the JFactory and JFactory_base classes and
should be used if you already have a pointer to the factory that you know produced the
object with the given id. Both provide a method called GetByID(oid_t). The difference
between the two is that the JFactory_base class can only return a JObject pointer while the
(template) class JFactory can return a pointer to the subclass which actually holds the
interesting data:

// Here, “fac” is a pointer to a JFactory_base object.
// Notice how you still have to cast the obj pointer once retrieved.
const JObject *obj = fac->GetByID(id);
const DTrackHit trackhit = dynamic_cast<const DTrackHit*>(obj);

// Here, “fac_th” is a pointer to a subclass of JFactory_base.
// The cast is done automatically for you with this method.
const DTrackHit *trackhit = fac_th->GetByID(id);

 - 18 -

D. Lawrence Page 18 12/5/06

Event Processors

Event Processors derive from the JEventProcessor class. This is the base class that
implements a type of state machine that is used in the JANA framework. It defines virtual
methods that are callbacks for specific conditions occur during the event processing.
Namely, the five callbacks are init, brun, evnt, erun, and fini. The formats of these methods
along with the conditions for which they are called are given in the following code snippet.

// Called once just before event processing begins
virtual jerror_t init(void);

// Called every time a new run number is detected.
virtual jerror_t brun(JEventLoop *eventLoop, int runnumber);

// Called every event.
virtual jerror_t evnt(JEventLoop *eventLoop, int eventnumber);

// Called every time run number changes, provided brun has been called.
virtual jerror_t erun(void);

// Called after last event of last event source has been processed.
virtual jerror_t fini(void);

 End user code is usually implemented in a class that inherits from JEventProcessor. A
pointer to the user’s class is registered with the JApplication object either by passing it as an
argument to the Run(…) method of JApplication, or adding it explicitly through the
JApplication’s AddProcessor(…) method like so:

// Instantiate an object of a class derived from JEventProcessor
MyProcessor *myproc = new MyProcessor();

// It can be registered with the framework either explicitly …
// (here, japp points to a JApplication object created earlier)
japp->AddProcessor(myproc);

// … or when you start to process events.
japp->Run(myproc);

The framework keeps track of the when to call the callbacks through the JEventProcessor
class.

 - 19 -

D. Lawrence Page 19 12/5/06

The JApplication Class

Every JANA application has a single JApplication object. The JApplication object directs
communication between the JEventLoop, JEventSource, and JEventProcessor objects.
JApplication is also responsible for creating and monitoring the event processing threads.
The constructor for JApplication takes the same arguments main() does so that it can be
used to parse the command-line arguments in a consistent way for all JANA applications.

Normally, a program will just pass the same arguments passed to main(int narg, char
*argv[]) into the JApplication constructor. The user may choose to modify the argument
list, or even provide an empty one in order to meet the needs of the specific application.
Arguments whose first character is a dash (“-“) are considered command line switches. Any
switch not known to JApplication is silently ignored so that the user can customize the
argument list of the program beyond the JANA default.

Standard Command Line Options
In order to provide some level of consistency in the command line interface among JANA
programs, a command line argument parser has been built into to JApplication
constructor. This allows features common to all JANA programs to be accessed without
having to duplicate the parse ladder in all programs. For example, the list of event sources
comes from the command line. One can also set the number of processing threads ,specify
configuration parameters, etc. … via the command line. These are all handled by the
JApplication parser in order to provide consistency across programs that may perform very
different tasks. The following table lists the standard command line arguments accepted by
JApplication.

 Argument Description
--nthreads=X Tell the program to run with X processing

threads. This will override any value
compiled into the program as the second
argument to JApplication::Run().

-Pkey=value Set a configuration parameter. This will
initially add a parameter named key with
value value to the internal database JANA
creates whenever a program is run. It will
override the compiled in value. This option
may be used multiple times.

-Pprint Print the configuration parameter database
to the screen on start up, once all of the
factories have been initialized. Normally,
only those parameters that differ from their

 - 20 -

D. Lawrence Page 20 12/5/06

defaults are printed.
source Any argument (excluding argument 0 which

is the program name) that does not start
with a hyphen (-) is assumed to specify an
event source (file or network based source).
These arguments are added to a list and
opened in the order that they appear on the
command line as needed.

--so=file.so Attach the shared object file file.so and look
for the InitPlugin(JApplication*) routine
within. The file file.so must be given with
either the full path, or the path relative to
the current working directory.

--sodir=directory

Look through all files in directory with
names that follow the*.so naming
convention and attach each of them as
though they were passed with individual --
so= arguments.

--plugin=plugin Attach the specified plugin. The plugin
should be the basename of the shared
object file (i.e. the filename without a path
and without the “.so” suffix. Plugins will be
searched for in directories that comprise the
plugin search path. See
JANA_PLUGIN_PATH environment
variable for details.

Using JApplication in Single Event Mode
There is a class of programs that do not fit well in the run-with-callback paradigm JANA
was designed around. These are primarily GUI (Graphical User Interface) programs that
need to allow interaction with the users at each event. It is actually not entirely correct to
say that GUI programs don’t fit well with run-with-callback. In fact, most GUI API’s
implement this exact method! The problem is that both JANA and the GUI API want to
implement the main event loop. Since there can be only one8 main event loop, JANA has
to be used in Single Event Mode so that events are processed upon request from the GUI
as opposed to automatically by the JEventLoop object.

8 Conner McCloud of the clan McCLoud.

 - 21 -

D. Lawrence Page 21 12/5/06

Configuration Parameters

Configuration parameters are values used in one or more places inside the reconstruction
code that one wants the option to modify without having to recompile. A distinction is
made between what we call “configuration parameters” and other types of meta-data such
as calibration constants. A configuration parameter has a default value that one does not
expect to vary. Calibration constants, however, are expected to vary from run to run and
are kept in an external database. Configuration parameters are stored as simple key-value
pairs. They cannot be used to store objects or arrays. There are three areas where
configuration parameters are expected to play a role: Configuration Recording, Parameter
Optimization and Debugging Flags.

Configuration Recording is storing the values for all configuration parameters used by a job
in the output file. This can be important since even though the default values of
configuration parameters are not expected to change, one has to assume that the
reconstruction code will be continually refined, occasionally leading to a new set of
defaults. Registering a value as a configuration parameter will record it automatically in the
output. It is often much more efficient to extract the values used from the output file than
to track down the exact version of the source files and look them up by hand.

An example of Parameter Optimization would be the following: Consider charged particle
tracking code, where there is a value representing the maximum number of hits a track
seed can have. The name of this parameter is TRK:MAX_SEED_HITS. The value of this is
used to decide when to stop growing a track seed and fit it. This parameter depends
somewhat on the rest of the tracking code and should be optimized for the tracking
efficiency. The way to do this is to process the same data set for several values of
TRK:MAX_SEED_HITS and compare the tracking efficiencies. If this parameter were
“hardwired” into the code, it would require an edit-save-compile step for every point.
However, by declaring TRK:MAX_SEED_HITS as a configuration parameter, its value can be
easily changed from the command line without recompiling.

One can also use configuration parameters to turn on debugging features that are normally
bypassed in the code. For example, an extra set of histograms may be defined or maybe
even the number of bins used in a histogram definition is modified. These types of changes
don’t affect the reconstruction aspect, only the amount or format of the output. It should
be noted that another facility exists to set the debug level for factories. See the section on
Debugging Your Code for more.

Using Configuration Parameters
Both key and value are stored as strings and converted when needed. Conversions are
done using the stringstream class in templated methods of JParameterManager. Any
variable type which can be converted by stringstream can be used (bool, short, int, long,

 - 22 -

D. Lawrence Page 22 12/5/06

float, double, string, unsigned short ,...). Parameters are managed by a global
JParameterManager object named jparms. The jparms object is instantiated globally (i.e.
without new and before main()) so it is accessible by all code in the program. There is an
extern declaration of jparms in JParameterManager.h which is included by
JEventProcessor.h. Therefore, it is automatically available to all event processors and all
factories (i.e. you can just use it).

To “publish” a local parameter as a configuration parameter, use the
SetDefaultParameter() method of jparms. Generally, you will initialize a data member of a
factory to the default value and then call jparms.SetDefaultParameter as shown in the
example below. The SetDefaultParameter method will check to see if a parameter with the
given key is already defined. If it is, it will overwrite the given variable with the one already
stored in jparms. If the given key does not yet exist, it will be added to jparms and
initialized using the value of the given variable. Since the factories are not created until after
the command line arguments have been parsed, the configuration parameters specified on
the command line will take precedence and override the default. Here’s an example
showing how to implement several configuration parameters.

//------------------
DTrackCandidate_factory::DTrackCandidate_factory()
{
 // Set defaults
 MAX_SEED_DIST = 5.0;
 MAX_SEED_HITS = 10;
 MAX_CIRCLE_DIST = 2.0;
 MAX_PHI_Z_DIST = 10.0;
 MAX_DEBUG_BUFFERS = 0;
 TARGET_Z_MIN = 50.0;
 TARGET_Z_MAX = 80.0;
 TRACKHIT_SOURCE = "MC";

 jparms.SetDefaultParameter("TRK:MAX_SEED_DIST", MAX_SEED_DIST);
 jparms.SetDefaultParameter("TRK:MAX_SEED_HITS", MAX_SEED_HITS);
 jparms.SetDefaultParameter("TRK:MAX_CIRCLE_DIST", MAX_CIRCLE_DIST);
 jparms.SetDefaultParameter("TRK:MAX_PHI_Z_DIST", MAX_PHI_Z_DIST);
 jparms.SetDefaultParameter("TRK:MAX_DEBUG_BUFFERS",MAX_DEBUG_BUFFERS)
 jparms.SetDefaultParameter("TRK:TARGET_Z_MIN", TARGET_Z_MIN);
 jparms.SetDefaultParameter("TRK:TARGET_Z_MAX", TARGET_Z_MAX);
 jparms.SetDefaultParameter("TRK:TRACKHIT_SOURCE", TRACKHIT_SOURCE);

 MAX_SEED_DIST2 = MAX_SEED_DIST*MAX_SEED_DIST;

JANA programs print out information about configuration parameters at startup. By
default, only those parameters that differ from their default value are printed. If only
default values are used, it is indicated by an “< all defaults >” message as shown in Figure 3.

 - 23 -

D. Lawrence Page 23 12/5/06

Figure 3: Running a JANA program without modifying any configuration
parameters results in a message indicating only default values are being
used.

Passing the command-line argument –Pprint will print all configuration parameters as
shown in Figure 4.

Figure 4: Configuration parameter output using -Pprint

 - 24 -

D. Lawrence Page 24 12/5/06

Accessing the Detector Geometry

<Not much has been written on this yet. Some design wok is still needed>

Accessing the Calibration Database

<Not much has been written on this yet. Some design wok is still needed>

 - 25 -

D. Lawrence Page 25 12/5/06

Interfacing with ROOT

The JANA framework is NOT integrated with ROOT9. This was done to provide some
degree of flexibility for those wanting to use the JANA framework, but not ROOT. It is
recognized, however, that a portion of the user base will want to integrate ROOT and
JANA in the same application. This chapter provides some hints on how this may be done.

9 ROOT is a C++ analysis package that provides, among other things, histogramming,
fitting, and linear algebra classes. See http://root.cern.ch for info.

 - 26 -

D. Lawrence Page 26 12/5/06

Event Sources

In JANA, an event source’s job is to read event-based information from a source (e.g. file)
and create objects which it then hands over to the framework. The framework takes
ownership of the objects the source creates and disposes of them when they are no longer
needed. JANA does not have a file format of its own. Rather, JANA provides an interface
through which to incorporate sources of data objects. Because of the generic interface,
JANA can support an unlimited number of event source types simultaneously. This means
for example that event sources can be written that obtain events from a file, shared
memory, or a network socket. This also means that multiple file formats can be
implemented in the same executable. For instance, one may have one file format for
simulated data and another for real data. The same JANA programs will read in either
format and the factories will be agnostic as to the exact source type.

To implement an event source in JANA, you will need to provide a minimum of two
classes. The first inherits from JEventSource and the second inherits from
JEventSourceGenerator. Each has just a few virtual methods that you must supply in order
to implement the source.

The JEventSource Class

The JEventSource class is responsible for actually reading the event data in from the source
and creating the data objects from it. The virtual methods which must be implemented in
the derived class are:

JEventSourceMyFormat(string source); // constructor

jerror_t GetEvent(JEvent &event);

void FreeEvent(JEvent &event);

jerror_t GetObjects(JEvent &event, JFactory_base *factory);

Descriptions are as follows:

Constructor:
The constructor is responsible for opening the source. Similarly, the destructor should
close the source. The exact format of the constructor is not really specified by
JANA. The constructor will actually be called from the JEventSourceGenerator class you

 - 27 -

D. Lawrence Page 27 12/5/06

provide so all that is really required is that they are compatible. See the section on the
JEventSourceGenerator class below for more details.

GetEvent:
This should read in the next event from the source and fill in the JEvent object’s fields with
information about the event (see below). Note that the entire event doesn't necessarily have
to be read in here. The framework is designed so that one could read in just a header and
have the JEvent refer to the header info. This could be used, for example, to sparsely read
in parts of the event from a file, saving I/O time.

The methods of JEvent that should be called are:

// Methods of JEvent class that need to be called from GetEvent(…)
void JEvent::SetJEventSource(JEventSource *source);
void JEvent::SetRunNumber(int run_number);
void JEvent::SetEventNumber(int event_number);
void JEvent::SetRef(void *ref);

The argument to SetJEventSource should always be this . The run number and event
should be extracted from the event itself. The meaning of ref is defined by the specific
event source being implemented. Typlically though, it will be a pointer to a class, struct, or
buffer of some kind that holds the event in its “raw” form.

If an event is successfully read in, then NOERROR should be returned (defined in
jerror.h). Otherwise, NO_MORE_EVENTS_IN_SOURCE should be returned.

One should note that it is possible to get the pointer to the JEventLoop object that is
processing this event through the JEvent::GetJEventLoop() method. This is useful for
sources where it is more efficient to parse the raw information once, creating all data
objects in a single pass through the event buffer. The JEventLoop pointer can be used to
get pointers to the factories that will take ownership of the data objects. For these types of
sources, the FreeEvent(…) and GetObjects(…) methods need not be implemented.

FreeEvent:
This gets called once the event has been fully processed and is no longer needed. Any
memory associated with the event can then be freed. This is optional and may be omitted if
it is not needed.

GetObjects:
This is where most of the work is probably done. When the framework receives a request
for objects of a certain type/tag, it will first try and find the factory corresponding to it. The
factory is needed only as a reservoir for the objects. If an appropriate factory is not found,
one will be created automatically. This allows one to read in objects of any type without
having to explicitly make a factory for them. The factory pointer is passed so that its

 - 28 -

D. Lawrence Page 28 12/5/06

CopyTo(...) method may be called to insert the objects created by the event source into it.
Thereby passing ownership to the factory.

In the GetObjects method, a check should first be made on what class of object is
requested. Since the source presumably knows the classes it can provide, a finite and
known number of checks are needed. Perhaps the best way to do this is through a
dynamic_cast of the factory pointer with a NULL check like this:

JFactory<DADC> fac = dynamic_cast<JFactory<DADC>*>(factory);
if(fac != NULL){
 vector<DADC*> data;

 //
 // create DADC objects from event and push them onto data …
 //

 fac->CopyTo(data);
}

The JEventSourceGenerator Class
The JEventSourceGenerator class is used by the framework to help it decide which
JEventSource is best suited to read events from a given source. The derived class must
implement three methods:

const char* Description(void);

double CheckOpenable(string source);

JEventSource* MakeJEventSource(string source);

Descriptions are as follows:

Description:
The Description method is used to provide the user with information as to which
JEventSource-based class is being used to read the source. This is purely informational for
the end user. The intent though is that this just returns a short 1-line (possibly 1-word)
description of the source.

CheckOpenable(string source):
This method is called by the framework before opening a new source to figure out which
one(s) are capable of reading it (if any). For example, if the source is a file, then the value of
source is the filename. In that case, CheckOpenable might do something as simple as

 - 29 -

D. Lawrence Page 29 12/5/06

checking the suffix of the filename or as complicated as opening the file and checking the
header.

The value returned should be a number between 0 and 1 with 0 meaning “absolutely
cannot read from this source” and 1 meaning “certainly can read from this source”. The
framework will use the largest non-zero value to determine which JEventSourceGenerator
to have make the JEventSource for this source.

MakeJEventSource:
This gets passed a single argument which is the source name (e.g. file name) which it then
passes to the constructor when creating a new JEventSource-based object. The pointer to
the new JEventSource object is returned.

 - 30 -

D. Lawrence Page 30 12/5/06

Saving Output to a File

 - 31 -

D. Lawrence Page 31 12/5/06

Multi-Threaded Event Processing

Multi-threading is one of the easier concepts to grasp while being one of the harder features
to implement. The difficulty in implementation arises simply from needing to get used to
the idea that threads must coordinate the use of resources that they share. A thread is a
single, independent process of execution. In a way analogous to how a single computer can
“simultaneously” run many programs at once, a single program can have many threads that
run at once. In fact, deep in the Linux kernel, threads are treated as though they are
separate processes. Analysis of large data sets is a natural place to use threads as each event
is independent and many events exist in a single file.

Threads have been around for a while, but their popularity has been growing in recent
years as multi-processor SMP machines have become more common. In fact, threading
will become necessary to take full advantage of the next generation multi-core CPU’s
currently being developed. The popular Intel x86 chip line has been at the 2.5-3.0GHz
level for a while now and the PowerPC family has yet to break (and likely never will) the
3.0GHz limit. Work is currently being done to develop chips with large numbers of cores
(20-100) on the same die. Single-threaded programs will utilize only a fraction of the
available computing power on the next generation computers so multi-threading should be
considered a requirement.

Using Multiple Threads
The framework itself has multi-threading ability built in. There are two ways a program can
be instructed to run with multiple event processing threads:

 Pass a second argument to the Run() method of JApplication in the source code
 Pass a --nthreads=N option on the command line when running the program.

All JANA programs run with a single event processing thread if neither of these is

specified. Note that multiple threads can be used even on a single processor computer.
You will just not see any performance gains.

The following is an example of a main routine for a JANA application that uses 4 threads
by default.

 - 32 -

D. Lawrence Page 32 12/5/06

int main(int narg, char *argv[])
{
 // Instantiate our event processor
 MyProcessor myproc;

 // Instantiate an JApplication object
 JApplication app(narg, argv);

 // Run though all events, calling our event processor's methods
 app.Run(&myproc, 4); // Tell JANA to run with 4 threads

 return 0;
}

The command line always takes precedence. If after compiling the above program I
decided I wanted to try running it with only 1 thread, I would run it like this:

>hd_ana --nthreads=1 hdgeant.hddm

If a program is acting flaky, it’s a good idea to try running it with a single thread. If it runs
OK in single thread mode, that is a good indication that you are not properly locking a
resource so multiple threads are colliding when accessing it. Any programs that expect to
run in batch mode (like on an analysis farm) should be thoroughly tested with multiple
threads before submitting a large job.

The model for multi-threading in event reconstruction is simple since it lends itself so
naturally to it. The fact that events are independent suggests having a single event processed
in a single thread. However, both the input(event source) and output must be shared by all
threads. For example, the typical job will consist of processing all events from a file, filling
histograms as you go. You start off with one input file and you want to end up with a single
set of histograms in the end. The threads must be coordinated to ensure only one is trying
to read an event from the source at a time. Likewise, only one thread should be modifying
the histograms/trees at any given time. The mechanism for locking access to a resource like
this is called a mutex (for mutual exclusion) and is part of the threads package.

JANA takes care of locking access to the event source, but it is up to the end user to
coordinate access to output such as histograms. It can be tempting to enclose the entire
contents of the evnt() method in a mutex lock. While this is definitely “thread-safe”, it also
will wipe out any gains from having multiple threads, reducing the program to essentially
single threaded operation. To take advantage of threads, all of the factory data should be
retrieved outside of the mutex lock. The code example below demonstrates the right way
to lock the evnt() method.

 - 33 -

D. Lawrence Page 33 12/5/06

#include <TThread.h>

// evnt
jerror_t MyProcessor::evnt(JEventLoop *loop, int event_number)
{
 // Do NOT place lock here! Most of the CPU time is spent in
 // the Get() calls below!

 // Grab whatever data we need from framework
 vector<const DCDCHit*> cdchits;
 vector<const DFDCHit*> fdchits;
 loop->Get(cdchits);
 loop->Get(fdchits);

 // Now lock the ROOT global area
 TThread::Lock(); // ROOT lock defined in TThread.h

 //
 // Fill histograms here using cdchits and fdchits
 //

 // Make sure we release the ROOT lock or the program will hang
 // on the next call to TThread::Lock()
 TThread::UnLock(); // ROOT lock defined in TThread.h
}

The above example demonstrates using locks for a program that produces ROOT output.
For other packages, something similar must be done when running with multiple threads.

How JANA Implements Threads
If you’re used to sequential programming, then introducing threads will require a slight
shift in the way you think about how programs work. The first thing to understand is that
an object created in one thread can be used by other threads. More importantly, more than
one thread can be “in” the same method of the same object at the same time. This is not all
that different from the old idea of being “re-eantrant” i.e. that a subroutine can call itself.
This is an important concept in the case of event sources. When an event is requested, a
JEventSource object must be made (if it doesn’t already exist) and then an event is read
from it. What happens is that the first thread to try and get an event ends up having to
create the JEventSource10 object, which it does through the JApplication object.
JApplication keeps track of this so other threads can use the same JEventSource to obtain
events. The JApplication, JEventSource, and JEventProcessor11 objects are ones used by all
threads. All threads must read from a single source(JEventSource), output the result to a
single output(JEventProcessor) and the information about these is kept in a centrally
accessible area (JApplication).

10 JEventSource is the base class for all event sources. In reality, this will always be a
subclass such as JEventSourceEVIO. The base class name JEventSource is used for
simplicity here.
11 Similarly to the previous footnote, this will be a subclass of JEventProcessor

 - 34 -

D. Lawrence Page 34 12/5/06

Some objects are kept exclusive to the thread that creates them. In particular, each thread
has its own independently running event loop so each has its own JEventLoop object. The
JEventLoop object creates it own set of factories so each set of factories is also dedicated to
a single thread. A conceptual sketch of this is shown in Figure 5. Having a separate set of
factories for each set can quickly use up the memory if one is not careful. For instance, if a
factory used a large 2-dimensional histogram that took up a significant, but reasonable
amount of memory for a single instance of the factory object, it could require unreasonable
amounts of memory to run many threads. The worst case scenario would be to cause the
system to start using virtual memory that would cause the system to slow to a crawl. In that
case, multiple threads would process events at a much lower rate than a single thread!

Figure 5: Conceptual view of how JANA objects are related when running
multiple threads. The JEventLoop and various JFactory objects are a ll

 - 35 -

D. Lawrence Page 35 12/5/06

specific to a thread while the JApplication, JEventSource, and
JEventProcessor objects are used by all threads.

Threads are launched by the JApplication::Run() method. The posix pthreads library is
used for threading so pthread_create() is called, passing the address of the LaunchThread()
routine. LaunchThread() is a stand-alone routine that is not a member of any class. It is
defined in JApplication.cc near the Run() method however since that is the only place it is
used. The LaunchThread() routine simply creates a JEventLoop object, calls its loop(…)
method then deletes the object after it returns from loop(…).

All JANA programs are actually run with a minimum of 2 threads. The main thread
continues in a “sleepy” loop while the processing threads do all of the work. That is to say,
the main thread spends most of its time in nanosleep() and wakes up once every 0.5
seconds to monitor progress. Most JANA programs (when not run in batch mode) will
periodically update the screen with the number of events processed and the rate at which
they are being processed. The main thread is responsible for making those calculations and
printing those messages to the screen. It also checks to make sure at least one processing
thread is still running so that when they are all done, it can break the “sleepy” loop, print
some final statistics and return from the Run() routine.

When the JEventLoop object is created, it is passed a pointer to the JApplication object.
This is used by the JEventLoop object to register (and eventually deregister) itself with
JApplication. One pitfall with this method is that if a JEventLoop gets stuck somehow in an
infinite loop, it will never deregister itself causing the main thread to also be stuck. To
address this, each JEventLoop passes the address of a “heartbeat” variable that it updates
after processing each event. This allows the main thread to kill a processing thread if it
appears to be stuck because it has not updated its heartbeat variable more than 3 seconds.
Heartbeat monitoring can be turned off by setting the monitor_heartbeat member of the
JApplication object to false:

JApplication *japp = new JApplication(narg, argv);
japp->monitor_heartbeat = false;

Turning off heartbeat monitoring is necessary in programs such as event viewers or when
programs are expected to read from a source that may block (e.g. from shared memory).

 - 36 -

D. Lawrence Page 36 12/5/06

Plugins

JANA can use event sources, factories, and event processors obtained from dynamically
linked binary object files (or plugins). The ubiquitous dl library, which is installed and
available by default on all major Unix platforms, is used. The dl library only provides for
linking “C” style routines so the interfaces are implemented in that way.

When JANA opens a plugin, it looks for a single symbol InitPlugin which has the following
form:

extern “C” {
 void InitPlugin(JApplication *japp)
 {
 // register factory generator…
 japp->AddFactoryGenerator(new MyFactoryGenerator());

 // …and/or event source generators
 japp->AddEventSouceGenerator(new MyEventSourceGenerator());
 }
}

Typically, the InitPlugin routine will create JEventSourceGenerator and JFactoryGenerator
based objects that it will then register with the application through the JApplication
::AddEventSourceGenerator and JApplication::AddFactoryGenerator methods. One can
also add JEventProcessor based objects through the JApplication::AddProcessor method.
This would be useful for say, implementing the generation and filling of histograms in a
plugin so that different histogram sets can be combined into a single output file.

C++ Objects obtained from plugins are given preference to statically linked ones.
Specifically, if a plugin provides a JFactory object based on the same type and with the
same tag as a statically linked one, the one from the plugin will be used and the statically
linked one will be ignored.

There are several ways to specify what plugins (if any) a JANA program will attach and use.
The first is through the command line. Using the --plugin=name, --so=filename or --
sodir=directory options, one can specify a plugin name, a file, or directory in which to
search for files respectively. The plugin name is the filename of the plugin minus the “.so”
suffix. When specified in this way, the JANA_PLUGIN_PATH path is searched for the
plugin. See the JApplication section for more info. on command-line options.

If you wish to specify an entire set of plugins, the user can set their JANA_PLUGIN_DIR
environment variable. This should be a colon separated list of directory paths to search for
plugins. Every file found in every directory in the path will be attached as a plugin. If a file
is not a shared object, or does not contain the InitPlugin symbol, then it will be quietly
ignored.

 - 37 -

D. Lawrence Page 37 12/5/06

By default, the user is not notified of all files that are looked for as plugins. To get more
verbose output, set the JANA_PRINT_PLUGIN_PATHS environment variable.

 - 38 -

D. Lawrence Page 38 12/5/06

Debugging

 - 39 -

D. Lawrence Page 39 12/5/06

Index

C

configuration parameter, 13

D

DANA, 1, 7, 8, 12, 13, 14, 15
DEventLoop, 13, 14
DFactory_base, 12, 14, 15
DTrackCandidate, 13, 14
DTrackHit, 13, 14

F

Factory, 12, 13, 14

G

GetFromFactory, 14, 15
GetFromSource, 15
GetObjects, 15

I

Identifiers, 15

M

mkfactory, 12

O

object-seekable, 15

S

STL, 7

T

Tag, 12, 14, 15
Tags, 12, 13, 14

