Worksheet for Assigned Radiation Monitor Unit 1

1.	Which of the following groups regulates Jefferson Lab with respect to radiation protection?					
	a. NCRP					
	b. DOE					
	c. NRC					
	d. IAEA					
2.	True/False The NCRP (National Council on Radiation Protection) has regulatory authority over all U.S. entities who are involved in radiation producing activities.					
3.	Why does Jefferson Lab have its own administrative dose control levels which are more restrictive the DOE imposed limits?					
4.	Why is the extremity dose limit higher than the whole body dose limit?					
5.	The ARM's chain of command is through whenever performing radiological					
	functions.					
6.	The curie applies to measuring what quantity?					
	a. The dose rate at a specific distance from a radioactive source.					
	b. The radiation weighting factor.					
	c. Specific ionization.					
	d. The number of radioactive atoms decaying per unit time.					
7.	A swipe reads 700 cpm above background. Give the activity in dpm.					
8.	Equivalent dose (rem) is used to account for our exposure to radiation because absorbed dose (rad) does not take into account					
9.	Alpha particles produce more/less (circle) ionizations per unit distance traveled in material than gamma-rays; therefore, the range of alphas is greater/smaller (circle) than that of gammas. This characteristic leads to a higher/lower (circle) radiation weighting factor for alphas.					
10.	The radiation weighting factor for neutron radiation of energy ~ 1MeV is					

11.	A person receives an <i>absorbed dose</i> of: 0.1 rad from gamma radiation, and 0.5 rad from <i>thermal</i> neutrons. What is the total <i>equivalent dose</i> ?
12.	External beta radiation is primarily a hazard to:
	 a. lungs b. skin c. whole body d. embryo
13.	Bremsstrahlung refers to radiation produced by the interaction of
	with matter.
14. Rank the following interactions of gamma radiation in terms of the energy ranges in wh most commonly (1-4, lowest to highest energy).	
	Pair production Photoelectric effect Compton scattering Photo-nuclear reactions
15.	All ionizing radiations impart kinetic energy to matter by liberating charged particles (ions). In elastic neutron scattering events, what type of charged particles are liberated (scattered)?

Worksheet for Assigned Radiation Monitor Unit 2

1.	Prompt radiation is the term given to radiation that is produced when:				·	
2.	The electron interaction that initiates most prompt radiation production is :				·	
3.	Rank the following targets in their photon production capability at energies >20 MeV? (1= highest)					
	a.	beryllium				
	b.	copper				
	C.	aluminum				
4.	When the beam is above the threshold for neutron production, it also produces:					
	a.	muons				
	b.	ozone				
	c.	residual rad	ioactivity			
5.	Which	two interacti	ons essentially cause the ele	ectromagnetic cascade?		
6.			a dose rate from a thick targ e beam is 1 GeV at 100 μΑ (1	et <i>in rad/hr,</i> one meter from 00 kW).	the target in the sideward	
7.	In terms of intensity, which type of radiation predominates inside the beam enclosure during operations?					
8.	Most neutron radiation is produced by nuclear reactions initiated by what type of "particle"?					
9.	Fill in t	the chart				
beam energy			radiation(s) produced	e-γ shower (Y/N)	activation (Y/N)	
500 keV						
1 MeV						
10 Me\	V					
45 Me\	V					
800 Me	eV					

10.	Refer to the chart on p. 29. Of the nuclides shown under "produced nuclide", which isotope will occur in the greatest amounts in the air inside the enclosure? Note: The production of the material is a function of the abundance of the parent, the cross section for activation, and the half-life of the produced nuclide (the shorter the half-life, the faster it builds up).
11.	Is the following ALARA risk assessment approach valid? Why or why not? (use "Radiation Risks in Perspective")
	Population size: 1 million people. Each person receives 5 mrem cumulative dose is then 5000 person-rem. If the cancer risk factor is assumed to be 4E-4 per rem, there should be 2 excess cancer fatalities due to the exposure ($5000 \times 4E-4 = 2$).
12.	How does ALARA compare to practices such as the use of a hardhat? How is it similar, and different?

Worksheet for Assigned Radiation Monitor Unit 3

1.	In a gas filled detector, ions that are created by the interaction of radiation in the chamber are collected via				
2.	In a detector operating in the ionization region, the gas amplification factor is:				
	 a. > 10⁵ b. 10 c. dependant on the specific detector d. 1 				
3.	proportional detector generates a for each ionizing particle detected.				
4.	Based on Table 1 on p. 39, which type of radiation will result in the largest pulse height output from a proportional detector? (all the ion pairs from a given particle cause one pulse)				
5.	The type of detector most affected by dead time is				
6.	In a scintillation detector, incident radiation is converted to which is detected using a PMT.				
7.	When using a boron-loaded neutron detector, such as a BF_3 proportional detector, slow neutrons are captured by the boron atom resulting in the immediate emission of				
8.	If using a GM survey meter in an area where a pulsed radiation field may be present, a potential problem is:				
	 a. exceeding the maximum range of the instrument b. the detector may respond to the pulse repetition rate rather than the exposure rate c. the detector may respond to the high RF field d. insensitivity to the neutron field, which is always the main concern around pulsed sources 				
9.	A serious potential for interference with the operation of portable instruments is caused by:				
	 a. Fluorescent lighting b. Dehumidifiers c. Energized magnets d. Cryogenic systems 				

Worksheet for Assigned Radiation Monitor Unit 4, 5, and 6

The general area dose rates in the tunnel AFTER beam operation are best described as:

low to moderate (\sim 1-100 mrem/hr) high, but not lethal (\sim 5 rem/hr)

1.

a. b.

	C.	variable, up to lethal range (~ 1 - 10 ⁶ rem/hr)			
2.	The m	ne main type of radiation of concern (what we normally survey for) in the enclosure after shutdown is:			
	a. b.	beta gamma			
	C.	alpha			
		rigger point for posting a Radiologically Controlled Area (RCA) is 0.05 mrem/hr (50 μ rem/hr). This is based on:			
	a.	a dose rate that's easy to detect with most instruments			
	b.	an arbitrary level which is administrative in nature			
	C.	the dose limit for a non-monitored individual (100 mrem/yr)			
4.	Airbo	Airborne radioactivity induced in the beam enclosure has what properties?			
	a.	primarily consists of tritium			
	b.	primarily consists of gaseous and short lived nuclides			
	С.	primarily consists of particulates with moderate half-lives			
5.	water	nplication for doing work involving the breach of a beam dump cooling water system is that the is contaminated with nuclides such as Be-7 and H-3. Why is this a "complication" (as compared ner nuclides)?			
6.	Descr	ibe the postings necessary for the following condition found on a beamline flange:			
	Contact dose rate 350 mR/hr, WB dose rate 60 mR/hr.				
	a.	High Radiation Area			
	b.	Radiation Area & Hot Spot			
	c.	High Radiation Area & Hot Spot			

- 7. The rapid access system used in Hall B is designed to:
 - a. Warn people of the presence of an HRA
 - b. Allow access without a survey, by verifying that general area dose rates are low
 - c. Allow emergency access only
 - d. Make sure there is no airborne radioactivity present
- 8. How is the rapid access system in Hall B different than the one in the injector?
 - a. The Hall B system is more sensitive
 - b. There is no residual activity in the injector, so the beacon would indicate a potential for a "beam-on" situation
 - c. The injector system is interlocked
- 9. The existence of a whole body dose rate >1000 mR/hr in an accessible area causes:
 - a. A DOE violation
 - b. The activation of an RWP which requires special access controls
 - c. An exclusion zone no one is allowed to enter until the levels have dropped
- 10. The Contamination Area is posted when beta-gamma contamination levels exceed:
 - a. 5000 dpm/100 cm²
 - b. 10,000 dpm/100 cm²
 - c. 1000 dpm/100 cm²
 - d. the limits of detection of the equipment being used
- 11. Requirements for entry to a High Radiation Area include:
 - a. RWP
 - b. Supplemental dosimetry
 - c. Protective clothing
 - d. a. and b.
- 12. ARMs may enter Radiation Areas under what circumstances:
 - a. Never
 - b. Only with specific concurrence from RadCon
 - c. For short periods of time to complete radiation surveys
 - d. Only during emergencies
- 13. During an emergency, firefighters may encounter potential sources of contamination. What is the best way to ensure a firefighter has not become contaminated during his/her response?
 - a. Have them leave their equipment here
 - b. Make sure they wash all exposed skin surfaces before leaving
 - c. Perform a frisk on them
 - d. Use a Microrem to survey their equipment