# Parity Violation Experiments & Beam Requirements

### Riad Suleiman Center for Injectors and Sources

**MCC Ops Training** 

August 05, 2009





# **Outline**

- Fundamental Interactions and Conservation Rules
- Parity Reversal and Parity Violation
- Experimental Techniques
- Beam Requirements and Physics Motivation
- Ops' and Users' Responsibilities
- Summary





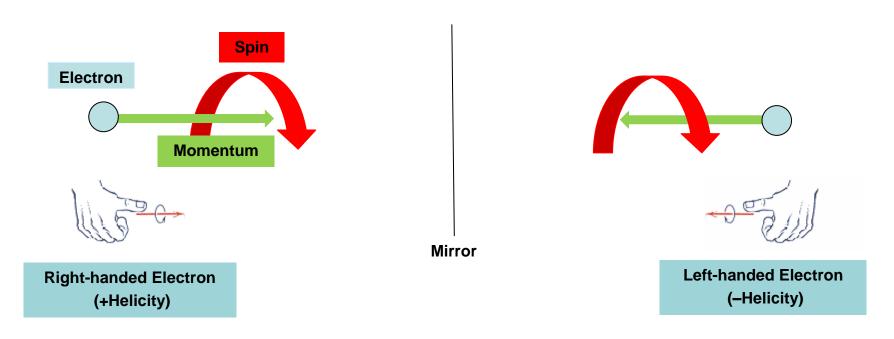
# **Fundamental Interaction**

| Interaction             | Source          | Field<br>Quantum                       | Range<br>(m)      | Coupling                     | Example                                             |  |
|-------------------------|-----------------|----------------------------------------|-------------------|------------------------------|-----------------------------------------------------|--|
| Gravity                 | Mass            | Mass Graviton ∞ 0.53x10 <sup>-38</sup> |                   | Solar System, Black<br>Holes |                                                     |  |
| Electromagnetic<br>(EM) | Electric Charge | Photon                                 | ∞                 | 1/137                        | Friction, Lighting                                  |  |
| Weak                    | Weak Charge     | Bosons<br>(W±, Z°)                     | 10 <sup>-18</sup> | 1.02x10 <sup>-5</sup>        | Neutron Decay, Neutrino<br>Interaction              |  |
| Strong                  | Color Charge    | Gluon                                  | 10 <sup>-15</sup> | 1                            | Proton, Nuclei                                      |  |
| Proton                  | r<br>Proton     | $F_{Gravity}$<br>$F_{EM} =$            | r                 |                              | is irrelevant in elementary<br>article interactions |  |





# **Conservation Rules**


| Interaction             | Energy | Momentum | Electric<br>Charge | Time<br>Reversal | Parity Reversal*<br>(Spatial Inversion) |
|-------------------------|--------|----------|--------------------|------------------|-----------------------------------------|
| Gravity                 | Yes    | Yes      | Yes                | Yes              | Yes                                     |
| Electromagnetic<br>(EM) | Yes    | Yes      | Yes                | Yes              | Yes                                     |
| Weak                    | Yes    | Yes      | Yes                | Yes              | Νο                                      |
| Strong                  | Yes    | Yes      | Yes                | Yes              | Yes                                     |

\* Do the laws of nature remain the same under Parity Reversal? Are an object and its mirror image the same?





### **Parity Reversal**



- Under Parity Reversal, the Right-handed electron becomes Left-handed electron (Helicity Reversal)
  - Changing the electron's spin direction (Helicity Reversal) is equivalent to Parity Reversal





# **Parity Violation**

| Particle | Electric Charge | Weak Charge         |                               |  |
|----------|-----------------|---------------------|-------------------------------|--|
|          | Right/Left      | <b>Right-handed</b> | Left-handed                   |  |
| е        | -1              | 0                   | -1/2                          |  |
| proton   | +1              | 0                   | 1-4sin²θ <sub>W</sub> (=0.08) |  |
| Neutron  | 0               | 0                   | 1                             |  |

- EM interaction is the same for Right-handed and Lefthanded electrons (Parity is conserved)
- Weak interaction is not the same for Right-handed and Left-handed electrons: Left-handed electrons interact weakly but Right-handed do not (Parity is violated)
- Electrons do not interact strongly

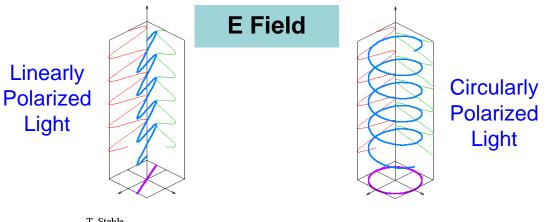


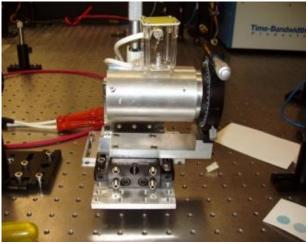


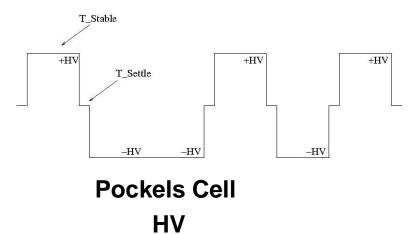
# **Experimental Techniques**

- How to carry out a parity violation experiment:
  - Scatter longitudinally polarized electrons off un-polarized target (*i.e.*, Hydrogen, Deuterium, Helium, Lead)
  - Reverse the beam helicity (±) with Pockels Cell, measure detected signals (D<sup>±</sup>) and currents (I<sup>±</sup>), calculate physics asymmetry (A <sub>physics</sub>):

$$A_{physics} = \frac{\frac{D^{+}}{I^{+}} - \frac{D^{-}}{I^{-}}}{\frac{D^{+}}{I^{-}} + \frac{D^{-}}{I^{+}}} \approx \frac{Weak}{EM}$$
1/15<sup>th</sup> of a second


- Repeat the whole experiment: Millions of measurements
- Statistical distribution of these measurements is Gaussian: Mean is average asymmetry and error is width of Gaussian divided by square root of number of asymmetry measurements
- Average asymmetry is very small (1-50 ppm)
- (1 drop of ink in 50 liters of water would produce an "ink concentration" of 1 ppm)



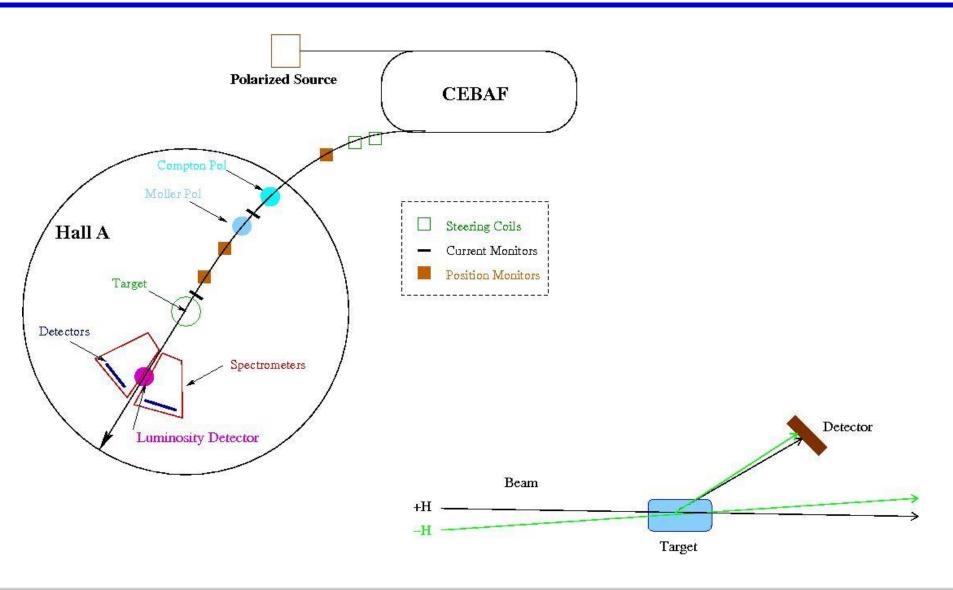

### **Pockels Cell**

- Pockels Cell is voltage controlled quarter wave plate
- Changes polarization of laser from linearly-polarized light
   to circularly polarized light








+HV: Right-handed circularly polarized light  $\rightarrow$  +Helicity electron

-HV: Left-handed circularly polarized light  $\rightarrow$  -Helicity electron





### **Experiment Layout**







# **Charge Asymmetry and Position Difference**

 Charge Asymmetry: When the average current of the electron beam corresponding to one helicity state is different from the other state,

$$A_{I} = \frac{I^{+} - I^{-}}{I^{+} + I^{-}}$$

□ We measure charge asymmetry of order 1-50 ppm

• Position Difference: When the average position of the electron beam corresponding to one helicity state is different from the other state,  $\Delta x = x^+ = x^-$ 

$$\Delta x = x^+ - x$$
$$\Delta y = y^+ - y^-$$

We measure position differences of order 1-40 nm
 (1 nm is one-billionth of a meter. The width of human hair is 50,000 nm)





# **Parity-Quality Beam (PQB)**

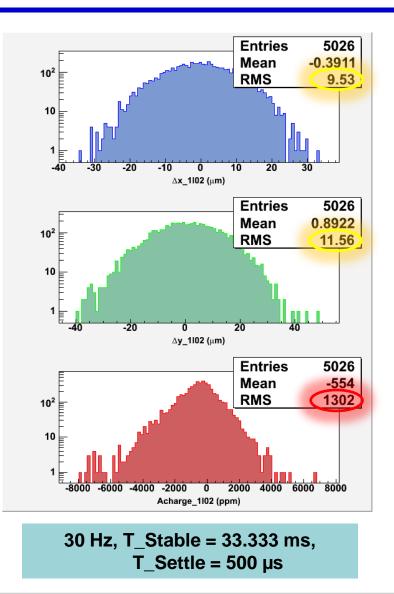
- Goal: Use the Pockels Cell at Fast Helicity Reversal to reverse only the spin direction, nothing else: All other properties of the electron beam (*i.e.*, position, current, energy, size) must stay the same
  - **Techniques to achieve "PQB":** 
    - I. (users) Careful alignment of the Pockels Cell to minimize un-wanted changes
    - II. (ops) Slow Helicity Reversal using Insertable Half Wave Plate (IHWP) and the Two Wien to cancel un-wanted changes on the electron beam
    - III. (Reza, Yves) Injector and Accelerator Matching to achieve Adiabatic Damping of beam orbits
    - IV. (users) Charge Feedback to reduce beam's current changes using either Pockels Cell or Intensity Attenuator (IA) without or with the option to correct for Pockels Cell hysteresis
    - V. (users) Position Feedback can also be done using the helicity magnets

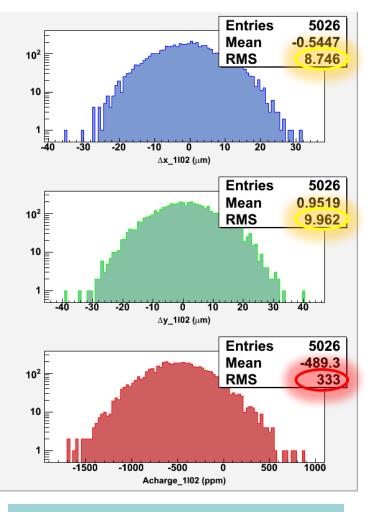




# **Pockels Cell Fast Helicity Reversal**

- We have been using 30 Hz helicity reversal:
  - I. Power line 60 Hz frequency is major source of noise in parity experiments
  - II. For 30 Hz reversal, T\_Stable (= 33.333 ms) contains exactly two cycles of 60 Hz line noise  $\rightarrow$  this reversal cancels line noise


### • However:


- There are other sources of noise at low frequencies, *i.e.*, target density fluctuations, beam current fluctuations
  - $\rightarrow\,$  Cause larger widths of helicity correlated distributions, double-horned distributions

### • Solution: Use faster helicity reversal (faster than 30 Hz)









1 kHz, T\_Stable = 0.980 ms, T\_Settle = 60 μs





### Summary of Fast Helicity Reversal Studies (Spring 09)

- Faster Helicity Reversal is needed:
  - I. Reasonable reduction in beam position noise
  - II. Reduces noise on beam current by factor of 4
  - III. Huge reduction of noise from target density fluctuations
- Achieved Pockels Cell T\_Settle of 60 μs
- Future Parity Experiment:

| Experiment         | Frequency | Clock       | Pattern |
|--------------------|-----------|-------------|---------|
| HAPPEx III & PVDIS | 30 Hz     | Line-Locked | Quartet |
| PREx               | 240 Hz    | Line-Locked | Octet   |
| QWeak              | 1 kHz     | Free        | Quartet |

New Helicity Board to be installed in August 2009

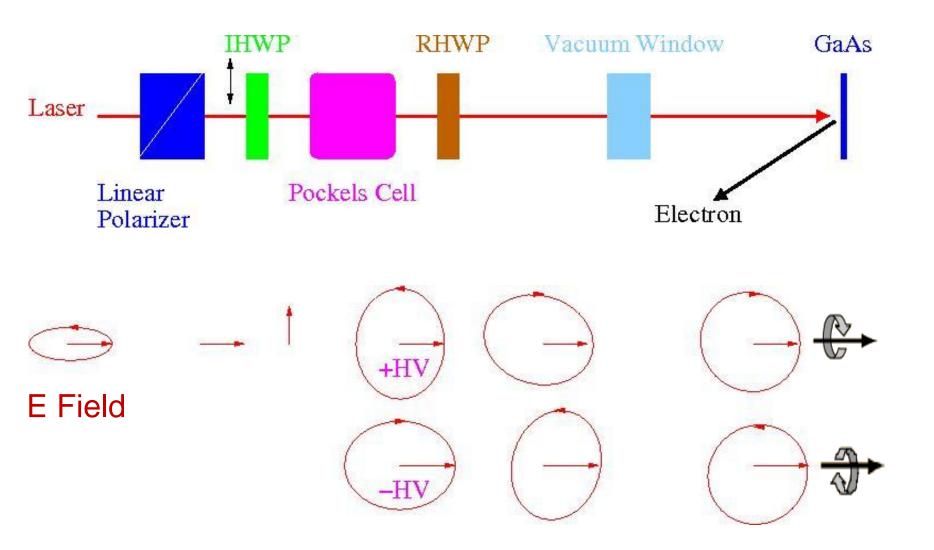





# **Slow Helicity Reversal**

- Slow Helicity Reversal (once a day) reverses the sign of the physics asymmetry. Some false asymmetries do not change sign, thus cancel when combining the data
- I. Insertable Half Wave Plate (IHWP) provides slow helicity reversal of laser polarization:
  - □ Cancels electronic cross talk and Pockels Cell steering
  - **Residual linear polarization effects do not cancel**
  - **Spot size asymmetry, which we cannot measure, does not cancel**
- II. New: Slow helicity reversal of electron polarization using two Wien Filters and Solenoid:
  - Cancels all helicity-correlated beam asymmetries from Injector including spot size
  - □ Will be installed in Winter SAD, modify beamline from Gun to Chopper



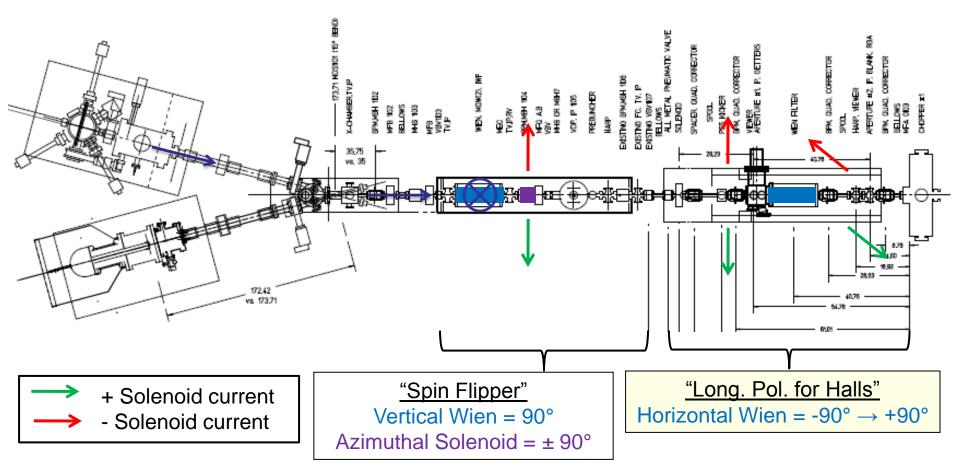



# **IHWP Slow Helicity Reversal**














# **Two Wien Slow Helicity Reversal**

- Wien settings constant
- Solenoid rotates spin by 90 with B but focuses beam as B<sup>2</sup>
  - Maintain constant Injector and Accelerator configuration







# **Parity Beam Requirements**

| Experiment | Hall | Start    | Energy<br>(GeV) | Current<br>(µA) | Target                        | A <sub>physics</sub><br>(ppm) | Maximum<br>Charge<br>Asym<br>(ppm) | Maximum<br>Position<br>Diff<br>(nm) |
|------------|------|----------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------------|-------------------------------------|
| HAPPEx-III | A    | Aug 09   | 3.484           | 85              | <sup>1</sup> H<br>(25 cm)     | 16.9±0.4                      | 1                                  | 10                                  |
| PVDIS      | A    | Oct 09   | 6.068           | 85              | <sup>2</sup> H<br>(25 cm)     | 63±3                          | 1                                  | 10                                  |
| PREx       | A    | March 10 | 1.056           | 50              | <sup>208</sup> Pb<br>(0.5 mm) | 0.500±0.015                   | 0.100±0.010                        | 2                                   |
| QWeak      | С    | May 10   | 1.162           | 180             | <sup>1</sup> H<br>(35 cm)     | 0.234±0.005                   | 0.100±0.010                        | 2                                   |
| Achieved   |      |          |                 |                 |                               |                               | 0.4                                | 1                                   |



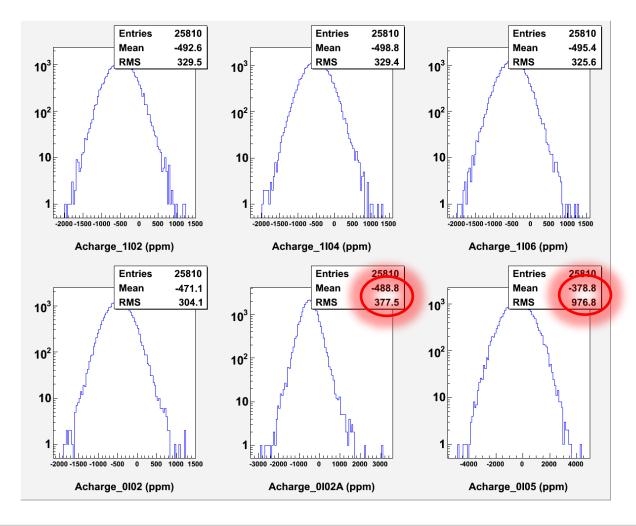


# **Physics Motivation**

- HAPPEx-III: Measure weak charge distribution of strangequark sea in proton
- **PVDIS: Measure weak charges of quarks**
- PREx: Measure weak charge distribution of neutrons in Lead (82 protons, 126 neutrons)
- QWeak: Measure weak charge of proton (1-4sin<sup>2</sup> $\theta_{w}$ )






# **Ops' Responsibilities**

- Good transmission in Injector through A1, A2, and MS. Watch the widths of charge asymmetries (will be displayed on Wall)
- Low beam halo in Compton Polarimeter
- Alarm Handler:
  - I. Pockels Cell ON
  - **II. Helicity Board settings**
  - III. IHWP IN/OUT





#### Example of bad transmission through Master Slit





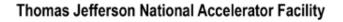


### **Users' Responsibilities**

- Pockels Cell alignment
- Charge Feedback: Channel Access to IA or Pockels Cell Voltages. Note: Each Hall has its own IA but the Pockels Cell is common to three Halls. Hall A will also do charge feedback on Hall's C charge asymmetry and vise versa.
- Position Feedback (if needed)
- Will turn off Fast Feedback (FFB) when doing Coil Modulation

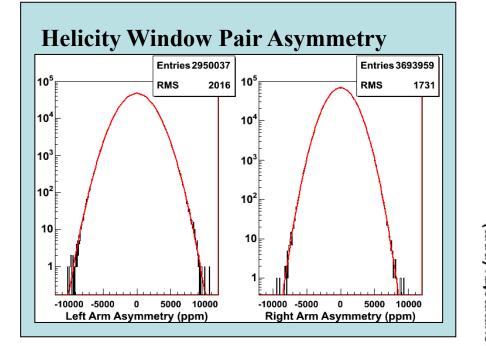


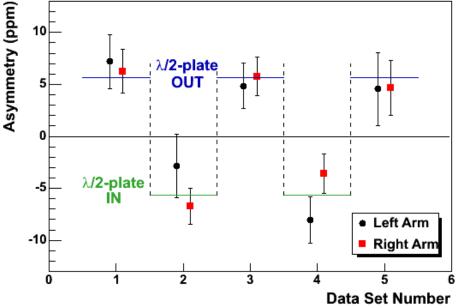



- The success of parity violation experiments depends mainly on achieving "PQB"
- Jefferson Lab is an ideal place for parity violation experiments
- We are getting better with many improvements in "PQB"
- Looking forward for even more demanding parity violation experiments at 12 GeV






# **Backup Slides**








## <sup>4</sup>He Results







