Working toward XHV

Characterization and Improvements of the Vacuum System for a GaAs Photoemission Electron Source

Marcy L. Stutzman

P. Adderley, J. Clark, A. Comer, S. Covert, J. Grames, J. Hansknecht, M. Poelker

Center for Injectors and Sources Thomas Jefferson National Accelerator Facility

Thomas Jefferson National Accelerator Facility

- 6 (12) GeV Electron accelerator for Nuclear Physics
- 85% polarization, up to ~200 μA beam to three experimental halls
- DC photoemission electron source
- Lifetime depends largely on vacuum
- Future accelerators (CLIC, EIC, ILC)

higher current required

Polarized Electron Source

- DC photoemission source
- Polished electrodes

4 pairs

- 100-130 kV
- Strained superlattice GaAs/GaAsP photocathode

Strained superlattice GaAs/GaAsP Bandwidth semiconductor QE ~ 1%, Pol ~ 85%

100 nm

Jefferson Lab

Vacuum affects cathode lifetime

Poor Vacuum, lower photocathode lifetime (red) Better vacuum,

higher lifetimes

Other lifetime factors 🎽

- photocathode properties
- field emission
- beam handling

How to reach XHV \equiv P < 0.76x10⁻¹² Torr?

Less gas in: reduce outgassing

Less gas in: reduce outgassing

- Outgassing measured by Spinning Rotor Gauge rate of rise
- Semi-vacuum bake
 - Hot air outside
 - Vacuum inside

Time (hours)

chamber	treatment	Q (Torr·L/s·cm ²)
304	900°C 2 hours before welding	9 x 10 ⁻¹³
93 liter, 316LN EP	400°C, ~10 days	1.5x10 ⁻¹³
38 liter, 316, thin wall, EP	400°C, ~10days	1.13x10 ⁻¹³
12 liter, 304	400°C, ~10 days	3.5x10 ⁻¹⁴ ?

More gas out: improve pumping

- Pump system combines
 - non-evaporable getters (NEG)
 - ion pumps
- Rotate NEG modules to eliminate line of sight from walls to cathode/anode gap
- Add ~400°C activation during 250°C bake

Pumping

• P_{calc}=QA/S

- Approaching calculated pressures
- Heat treated chambers: closer to expected pressure
- All pressures
 nitrogen equivalent

Pressure still not as low as predicted

Do ion pumps limit a chamber's ultimate pressure?

System 1: 40 L/s ion pump (diode)

Flapper Valve	HV Chamber IP	Extractor Gauge	
Open	0.1 nA	8.8x10 ⁻¹² Torr	
Closed	3.5 nA	8.2x10 ⁻¹² Torr	Hurts

Flapper valve between ion pump and NEG pumped chamber with extractor gauge

System 2: old custom diode PE ion pump

Flapper Valve	HV Chamber IP	Extractor Gauge
Open	0.5 nA	7.0x10 ⁻¹² Torr
Closed	1.8 nA	7.8x10 ⁻¹² Torr
Open	0.3 nA	7.6x10 ⁻¹² Torr
Closed	1.1 nA	8.8x10 ⁻¹² Torr

need more data

trying XHV option on Gamma ion pumps, no clear results yet Reduce SIP size?

UHV ion pump supplies

• UHV ion pump power supplies

- power ion pumps once turned on
- monitor current down to <1 nA
- sensitive relative pressure monitor
 - diagnose vacuum activity due to field emission without glowing filament
- Work in progress to extend lower measurement limit
- Now can read 10 picoA, see vacuum activity at that level

Measure pressure

- 2x10⁻¹² Torr limit
 Real pressure?
 Gauge limitation?
- Oerlikon Leybold extractor gauges
 - x-ray limit quoted
 <0.76x10⁻¹² Torr
 - recessed collector
 - vary reflector voltagex-ray limit measurement

Thomas Jefferson National Accelerator Facility

Measure X-ray limit

method published by Fumio Watanabe, J. Vac. Sci. Technol. A **9**, 2744 (1991)

Jefferson Lab

Measure X-ray limit

Jefferson Lab

Better background subtraction

Measure "emission off" background with gauge elements biased

Reflector voltage (V)

First extractor: biased, no emission current/pressure measured

Second extractor: biased, emission on no current/pressure measured x-ray limit near 2x10⁻¹² Torr as installed?

X-ray limit subtraction

Watanabe BBB Gauge

Fumio Watanabe JVSTA 28(3) p.486 2010

Deflector variation background below IE540 detection limits (use electrometer below 1x10⁻¹³ Torr)

230° deflector, BeCu housing pressure measurement limit quoted $4x10^{-14}$ Torr !!! Leybold IM540 controller + bias

Gauge comparison system

- Old gun chamber
- NEG module array
- 25 L/s SEM/XHV ion pump
- 2 extractor gauges
- 1 BBB gauge
- 1 device formerly known as RGA
- Spinning rotor gauge
- Two gas inlet manifold with leak valves
- Outgassing sub-optimal
- Pumps not optimally activated
- No gauges with traceable or up-to-date calibration

First data: Gauge comparison

Jefferson Lab

- Extractor and BBB recorded with hydrogen gas introduction
- Extractor readings slightly higher
 - calibration issue
- % difference increases at lower pressures need more data
- Need data below 5x10⁻¹² Torr
 - Better test chamber

Spinning Rotor Gauge Comparison

Threefold work toward XHV

- Outgassing measurably reduced
 - 400°C long heat treatment
 - Reduced area of thick flanges
- Pumping configuration improved
 - Rotated GP1250 NEG modules
 - Activate during bakeout
 - Still investigating ion pump behavior
- Accurate pressure measurement
 - Extractor gauge "as installed" x-ray limit measurements
 - New Watanabe BBB gauge first data

Thank you for your attention

Installed Load-Locked gun

