A PEPPo Overview

e⁺ sources Basic principles Experiment setup

<u>Sources</u>

 β^+ decay:

²²Na \longrightarrow ²²Ne + \overrightarrow{e}^{+} + ν_{e} P_{e+} = 40% L.A. Page & M. Heinberg. Phys. Rev., 106(6):1220-1224, 1957.

Pair creation: in a high Z target with polarized gamma rays

Compton back scattering

Demonstration at KEK: Circularly polarized laser photons scatter from a 1.22 GeV electron beam

T. Omori et al, PRL 96 (2006) 114801

Helical Undulator

Demonstration at SLAC: 46.6 GeV electron beam in helical undulator producing 8MeV photons at main harmonic

G. Alexander et al, PRL 100 (2008) 210801

Polarized Bremsstrahlung

 γ energy / e- energy

e+ energy / γ energy

Experiment

Goal:

Polarization measurement for demonstration of principle of $\vec{e^+}$ with $\vec{e^-}$ in a single target.

Electron beam in the injector

Current: 1 mA Max. kinetic energy: 8 MeV Polarization: 85% (2004) Advantages:

- ✓ Mott Polarimeter (Δ P/P<1%)
- ✓ e^{-} spectrometer ($\Delta p/p < 3\%$)
- ✓ Adjustable e⁻ energy (2-8 MeV)
- ✓ e^{-} for calibration of e^{+} line
- ✓ Demonstration = No high power target low e⁻ current (1-10 µA) low energy (8 MeV)
- ✓ Same e⁺ energy range as E166 experiment → expertise & equipment for e⁺ line

Positron Production

Tungsten target:

high Z and high melting point

Experiment: measurement of polarization as a function of the positron energy

e⁻ beam:

1 μ A, P=85%, 8 MeV to increase EM shower

Precision of measurements depends on the positron polarization and current and can be characterized by the *figure of merit (FoM)*

Energy selection

Successfully used for **E166** experiment, loan for **PEPPo**

2 dipole spectrometer conserving longitudinal polarization

Solenoid to help collect particles after W target

Room for improvements:

Addition of diagnostics/collection optics at the spectrometer exit

G. Alexander et al, PRL 100 (2008) 210801

Polarimetry

Compton Transmission polarimeter used for E166, loan for PEPPo

Reconversion target $(\overrightarrow{e^+} \longrightarrow \overrightarrow{\gamma})$

The asymmetry δ of the photon transmission through an analyzing target (P_t), when flipping the sign of P_t, gives the positron polarization

$$P_e = \frac{\delta}{P_t \cdot A_e}$$

 ${\rm A}_{\rm e}$ is the analyzing power determined by simulation or cross checking of electron polarization with Mott

Conclusion

- Polarized positrons via bremsstrahlung never been tested
- Technological advances of high-P electron sources make this demonstration experiment relevant.
- E166 apparatus for spectrometry and polarimetry available for PEPPo helps a lot.
- Electron beam in the same energy range as the positrons for spectrometry and polarimetry calibration