

Principle of Operation

G. Alexander et al, PRL 100 (2008) 210801 G. Alexander et al, NIM A 610 (2009) 451

> The E166 experiment operated with high incident particle flux, integrating the energy deposited in the crystal per beam pulse and per target polarization orientation.

The signal read-out was realized with BaBar inspired electronics, relying on Hamamatsu S2744-08 photodiodes, a set of amplifiers, and ADCs.

Small experimental asymmetries and large polarization transfer from circularly polarized photons to longitudinally polarized positrons have been reported.
Experimental proof of the undulator based polarized positron source for ILC.

K. Laihem, PhD Thesis, Humboldt Universität zu Berlin (2008)

The high energy response of the crystals is quite good and well understood.
Electronics noise is a matter of concern for small energy deposit.
Energy resolution at small energy deposit does not look impressive.

Principle of Operation

> **PEPPo** will investigate the **longitudinal polarization transfert** from polarized electrons to polarized positrons.

> Experimental asymmetry will be measured with respect to the electron beam helicity for a given target polarization orientation.

> We aim at three different analysis schemes of the experimental signal: integrated (similar to E166), semi-integrated (energy distributed asymmetry and built-in pulse shape analysis), and event-by-event (energy distributed asymmetry and off-line pulse shape analysis).

PMT Base

Cosmíc Test

About 50 MeV energy deposit for perpendicular minimum ionizing particles.

Signal Characterization

HV = 1400 V $\Delta t = 2.0 \mu s$ Th. = 15 mV

> The test is performed with the same light collection surface as E166 configuration.

> The effective efficient duration of the signal is about 2 μ s.

Optical fiber for LED monitoring of the experimental chain

> Improved light collection surface together with a direct coupling of the PMT to the crystal using an optical gel.

> > $20 \times 20 \rightarrow 54 \times 54$ (surface factor = 7.3)

HV = 1300 V $\Delta t = 2.0 \mu s$ Th. = 7 mV

The improvement of the surface collection and PMT-crystal optical coupling leads to a 100 V gain on the operational high voltage.

> Unexpected behaviours appear... DAQ issues... On-going investigations...

Compton Transmission Polarimetry

Polarized e[±] convert into circularly polarized photons into a tungsten target.
The photon polarization is analyzed via Compton scattering off a magnetized iron target.

* The analyzing power A_e is obtained from electron beam calibration data and simulations.

High DAQ rates capabilities will be obtained with the flash ADC FADC 250 developped at JLab.

Experimental Issues

IM Integrated Method

✤ ADC samples are summed over the time duration of the helicity gate.

The total energy deposited in a crystal per helicity state is registered (2 × 9 values).

The DAQ trigger is the helicity gate.

Small asymmetries are expected.

* No threshold, pile-up or dead-time concerns.

 Potential helicity correlated background issues.

SIM Semí Integrated Method

☆ ADC samples per event are summed for a fixed time window and tagged by helicity state.

☆ The energy deposit per crystal, helicity state, and event is registered (2 × 9 × nb of energy bins values).

The DAQ trigger should be external (positron counter ?).

* Sizeable asymmetries are expected.

Threshold or pile-up issues but no dead-time concerns.

* No helicity correlated background concerns.

EVEM Event-by-Event Method

* ADC samples for a fixed time window (2-3 μ s) are tagged by helicity state.

Each ADC sample per crystal, helicity state, and event is registered (9 x 750 values).

The DAQ trigger should be external (positron counter ?).

✤ Sizeable asymetries are expected.

Threshold, pile-up, and dead-time issues.

* No helicity correlated background concerns.

Technical Issues

Calorimeter Operation

- Operation of the calorimeter with the FADC 250 - Development of solutions and practices for each experimental issues - Exhaustive simulations (analyzing power, transverse polarization effects, misalignement effects, positron distribution sensitivity...) ...