

Baryons 2002 @ JLab Thomas Becher, SLAC

Feb. 2002

Overview

- Chiral dynamics ... with nucleons
- Higher, faster, stronger, ...
 - Formulation of the effective Theory
 - Full one loop results: $O(q^4)$ (Two loop result for m_N)
 - Isospin breaking, electromagnetism.
 - Pionic hydrogen
 - Two nucleon sector
 - Connection to lattice QCD: Quenched BCHPT
 - Photons: RCS, VCS, OMC, RMC,... → Merkel's talk
 - Higher energies: Resonances, dispersion relations
- ... but still puzzled: $g_{\pi N}$, σ -term, SU(3)

"QCD Lite" ... (QCD for *N*=2 massless flavors)

- One "parameter" $g_s \leftrightarrow \Lambda_{QCD}$
 - Parameter free predictions for dimensionless quantities
- High degree of symmetry: $SU_V(2) \times SU_A(2)$

Chiral Expansion

• Goldstone bosons decouple as $E_{\pi} \rightarrow 0$

- Low energy singularities of the Geen's functions from the propagation of π 's.
- Account for those, expand amplitudes in external momenta.
- $\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{Lite}} + \sum_{i} m_i \, \bar{q}_i \, q_i$
 - But m_u,m_d (and m_s?) happen to be light
 - Treat mass term as a perturbation
- Simultaneous expansion in q_μ, m_u, m_d

CHiral Perturbation Theory

- Chiral symmetry leads to relations between different amplitudes
- PCAC, Current Algebra
 - Work out structure of amplitudes and symmetry relations by hand. *Tedious!*
- > CHPT: Use effective Lagrangian $\bigotimes_{eff}(\pi)$
 - most general \otimes_{eff} compatible with symmetries
 - QCD dynamics encoded in coupling constants.
 - Order \bigotimes_{eff} by the number of derivatives on the π -field and by powers of m_q

- Low energy QCD in terms of a small number of parameters
 - Connect different processes
 - Experiment vs. lattice simulations
- Extrapolation to QCD Lite
 - Predictions of the symmetry.
 - Mechanism of symmetry breaking?
 - E.g. nucleon mass in chiral limit?

Baryon CHPT • Include nucleon • $\bigotimes_{\text{eff}} = \bigotimes_{\pi} + \bigotimes_{N}$ • Lowest order $\mathcal{L}_{N}^{(1)} = -\frac{g_{A}}{2E} \bar{\psi} \gamma^{\mu} \gamma_{5} (\partial_{\mu} \pi) \psi + \frac{1}{8E^{2}} \bar{\psi} \gamma^{\mu} \gamma_{5} (\partial_{\mu} \pi) \psi$

$$= -\frac{g_A}{2F_\pi} \bar{\psi} \gamma^\mu \gamma_5(\partial_\mu \pi) \psi + \frac{1}{8F_\pi^2} \bar{\psi} \gamma^\mu i[\pi, (\partial_\mu \pi)] \psi + \dots$$

- Interactions with soft pions:Nucleon remains nearly static, surrounded by cloud of π 's
- \otimes_N contains odd powers of derivatives

Low Energy Constants

Pion sector Nucleon sector Odd and even powers Only even powers $+ \qquad \mathcal{L}^{(4)}_{\pi\pi} \qquad + \qquad \mathcal{L}^{(6)}_{\pi\pi}$ $\mathcal{L}_{\pi\pi}^{(2)}$ $\mathcal{L}_{\pi\pi} =$ (7)(53)(2) $\mathcal{L}_{\pi N} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} \\ (1) \quad (7) \quad (23) \quad (118)$ Tree-level 1-loop 2-loop

Fettes, Meissner, Mojzis & Steininger

Expansion of the *N*–Kinematics...

Chiral expansion of the N-propagator

■ Can be implemented into ⊗_{eff}: HBCHPT

is delicate ... Choice of kinematical variables Threshold singularities: Breaks down at the threshold

 $\rightarrow \infty$ for $t \rightarrow 4M_{\pi}^2$

Slow convergence at threshold

and can be avoided.

- Relativistic formulation
 - Dimensional regularization
 - Loop graphs are of the same order as tree level.
 - Problems to organize the perturbation series
 - Infrared regularization
 - Variant of dim. reg.
 - Well organized perturbation series
 - Avoids expansion of *N*-kinematics

Ellis & Tang; Becher & Leutwyler; Goity, Lehmann, Prezeau, Saez

Infrared Regularization

- Split dim. reg. loop graphs L = R + I
 - *R* : Large loop momentum $k \sim m_N$
 - Violates chiral counting
 - Trivial chiral expansion
 - *I* : Small loop momentum $k \sim M_{\pi}$
 - Contains all low energy singularities
- Absorb *R* into definition of \bigotimes_{eff} and set L = I
 - Powercounting
 - Controlled expansion of kinematics
 - Manifest Lorentz invariance

$\pi N \rightarrow \pi N$ Scattering Amplitude

O(q⁴) result in isospin limit

- HBCHPT Meissner and Fettes
- Infrared regularization Becher and Leutwyler
- Isospin breaking (strong and e.m.)
 - O(q³) Meissner and Fettes
- Inclusion of Δ -resonance
 - $O(\varepsilon^3)$ Ellis and Tang; Meissner and Fettes

$\pi\pi \rightarrow \pi\pi$ versus $\pi N \rightarrow \pi N$

More LEC's for πN-Scattering

- 4 parameters for $\pi\pi \to \pi\pi$ to O(q⁴)
- 14 for $\pi N \rightarrow \pi N$ to $O(q^4)$
- But also *more data* !
- πN experimental region is at "higher" energies.

Low Energy Region

• Low energy expansion breaks down, once resonances are produced!

Scattering amplitude at O(q⁴)

Simple parameterization

A(v,t) = B + P(v,t) + F(s) + F(u) + G(t), where $v = (s-u)/4m_N$

- *B* : Nucleon pole terms
- *P* : Polynomial ← LEC's
- F: s-channel cut, linear in t.
- G: t-channel cut, linear in v.
- Four (2 spin × 2 isospin) amplitudes in terms of 9 functions of a *single* variable.
- Constraints from Chiral Symmetry
 - Goldberger-Treiman relation
 - Value of the amplitude at the CD-point

Goldberger Treiman Relation

Relation between g_A and g_{πN}

$$g_{\pi N} = \frac{g_A m_N}{F_\pi} \{1 + \Delta_{GT}\}$$

- $\Delta_{\rm GT}$ vanishes for m_q =0. Note $M_{\pi}^2 \propto m_q$ $\Delta_{GT} = c M_{\pi}^2 + O(M_{\pi}^4)$
- No chiral logarithm, no M_π³ term!
 Experimentally: Δ_{GT} =2-4%

KH80

Isospin Odd Amplitude

Cheng Dashen point:

$$C = 2 F_{\pi}^2 \left. \frac{\bar{D}^-(\nu, t)}{\nu} \right|_{\nu = 0, \ t = 2M_{\pi}^2}$$

•
$$C = 1$$
 for $m_q = 0$
 $C = 1 - \frac{1 + 5 g_A^2}{24 \pi^2 F^2} M^2 \ln \frac{M}{\mu} + k_1 M^2 + k_2 M^3 + O(M^4)$

- Contains chiral log: Expect O(10%) symmetry breaking
- "Experimentally" $C \sim 1.06-1.13$
- Contraint on subthreshold coefficients

Isospin Even Amplitude

- Scalar form factor ↔ Amplitude at CD
 - Amplitude at CD: $\Sigma = F_{\pi}^2 \overline{D}^+(0, 2M_{\pi}^2)$
 - And scalar form factor

$$\langle N' | m_u \, \bar{u}u + m_d \, \bar{d}d \, | N \rangle = \sigma(t) \, \bar{u}' u \; .$$

Relation

$$\Sigma = \sigma (2M_{\pi}^2) + \Delta_{CD}$$
$$\Delta_{CD} = k_{CD}M^4 + O(M^5)$$

• No low E singularities in $\Delta_{\rm CD} \approx$ 1-2MeV.

 σ -Term

Quark mass dependence of the nucleon mass

$$\sigma \equiv \sigma(0) = m_u \frac{\partial m_N}{\partial m_u} + m_d \frac{\partial m_N}{\partial m_d}$$

 Extrapolation t= 2M_π² → t=0.
 CHPT confirms dispersive result
 σ(2M_π²) - σ = 15.2 ± 0.4

 Value of Σ → σ

Isospin Even Amplitude

Chiral representation is not precise enough to extrapolate experimental results to the CD region

Higher Energies

- Two issues
 - Unitarity is fulfilled only perturbatively in CHPT.
 - One loop imaginary parts are "tree level" squared and not very accurate.
 - Resonances
 - Δ -Resonance close to threshold and $g_{\Delta N\pi}$ is large.

Can be taken into account systematically

Jenkins & Manohar; Hemmert, Holstein & Kambor

- Incorporate Δ into $\boldsymbol{\boldsymbol{\otimes}}_{\text{eff}}$.
- Count both q_{π} and $\Delta = m_{\Delta} m_{N}$ as O(ε).
- Scattering amplitude known to $O(\varepsilon^3)$.

Ellis & Tang, Fettes & Meissner

- Pole term is dominant contribution.
- Accuracy similar to O(q⁴) CHPT result
- Unitarity remains an issue.
- Nonrelativistic expansion of the △-propagator...

Implement Unitarity

- Unitarization
 - Unitarize model or CHPT result

E.g. Oller and Meissner

- Good description of experimental data
- Various unitarization prescriptions
- Model dependent, distort structure of amplitude
- Dispersion relations
 - Use experimental imaginary parts, generate real part with dispersion relatios
 - Integral equations

Dispersive approach

- Complicated! Function of *two* variables.
- Implement low energy structure found in CHPT (functions of *single* variable)
 - Leads to set of integral equations similar to the Roy-equations in ππ-scattering
 - Input:
 - Exp. data above elastic region
 - Four subtraction constants

Becher, Leutwyler; Mojzis; Stahov

Isospin violation

- Two sources
 - Strong: Quark mass difference m_u-m_d
 - Electromagnetic
- Need to treat both on equal footing
 - Count e² as O(q)
 - $\pi N \rightarrow \pi N$ to $O(q^3)$ Meissner and Fettes
 - Isospin breaking small, mostly static
 - Dynamical effects only in S-wave O(1%).
 - Models incomplete

π⁻p Bound State

Scattering lengths from π^-p energy shift and decay width.

0.01

-0.1

- Theory developed.
- Results for $\pi^-\pi^+$.
- Level shift for π -p. $\pi_{\pi^{\circ}}^{-}$ 0.00

Gasser, Lyubovitskij & Rusetski; Eiras, Soto a₀₊ + a₀₊ from nydrogen snift Hydrogen Width Deuterium Shift

-0.09

-0.08

Conclusion

- Have
 - Reached high precision
 - Studied wide range of processes
 - Good understanding of the role of chiral symmetry in the baryon sector.
- Chiral symmetry breaking is a *small* effect
 - Minimize model dependence
 - Push dispersive methods to connect with experimental results.
 - Resolve discrepancies in basic parameters