Heavy quark physics on the lattice

BARYONS2002

Christine Davies

Lattice QCD =

Euclidean space-time lattice

+ QCD Lagrangian (discretised)

$$\mathcal{L}_{QCD} = \mathcal{L}_g + \mathcal{L}_q$$

= $\frac{1}{2g^2} Tr F_{\mu\nu}^2 + \overline{\psi} (\gamma \cdot D + m) \psi$

Parameters are those of QCD: Bare gauge coupling $\beta = 6/g^2$ Quark masses, $m_i a$. Lattice spacing (a) is implicit u.v. cutoff

Determine a and fix m_i from $1 + n_f$ hadron masses.

Difficulties

Systematic errors:

- Discretisation errors physical results are dependent on a. Reduce the dependence and/or extrapolate to a = 0.
- Matching errors must renormalise lattice matrix elements to obtain continuum results. Requires pert. or nonpert. matching calculation.
- Quenching errors v. expensive to include light dynamical (sea) quarks. Error from using quenched approx. = 10-20% (?).

A short history of lattice QCD

- Invented 1974 slow progress
- Renaissance in 1990s
 - Much improved understanding of systematic errors
 - 10-20% errors possible on spectrum, form factors etc
- Second lattice revolution early 2000s
 - Teraflop computing power will enable simulations with 'real' dynamical quarks
 - carry improvement of systematic errors further
 - -2-3% errors will be possible

Why do you care?

Improved theoretical precision will add huge value to experiment, e.g. from B factories.

(CLEO-c - new expts will check lattice errors.)

Heavy Quark Physics

Heavy (b and c) quarks $(m >> \Lambda_{QCD})$ present special challenges to lattice QCD because $m_Q a \ge 1$. $m_b a \sim 2 - 3$, $m_c a \sim 0.5 - 1$. $\vec{p} \approx m_Q$ very distorted and naive use of relativistic quark formulations (Wilson, clover) give large errors ($\propto m_Q a$, $(m_Q a)^2$).

BUT, b and c are non-relativistic in their bound states.

 m_Q and $\vec{p} \approx m_Q$ are irrelevant dynamical scales. Can treat b and c quarks accurately on the lattice with non-relativistic techniques.

Several ways to proceed:

1. Static Quarks : $m_Q = \infty$ limit. Spinless and flavourless. Quark prop = string of gluon fields in time dirn. Useful limit for understanding HQET.

2. NRQCD : Non-relativistic effective theory.

$$\mathcal{L}_Q = \overline{\psi} (D_t - \frac{\vec{D}^2}{2m_Q a} - c_B \frac{\vec{\sigma} \cdot \vec{B}}{2m_Q a} + \ldots) \psi$$

 ψ a 2-component spinor. $m_Q a$ fixed by requiring one heavy hadron mass correct. $E_h(p) = E_h(0) + p^2/2m_h$.

 c_i fixed by pert. or nonpert. matching to QCD. $m_Q \rightarrow \infty$ is static.

Cannot take *a* to 0 but improve until a-dependence small enough.

3. Heavy Wilson quarks (FNAL method). :

$$\mathcal{L}_Q = \overline{\psi}(\mathcal{D} + m_Q a - \frac{iac_{sw}}{4}\sigma_{\mu\nu}F^{\mu\nu})\psi$$

but interpret non-relativistically to fix $m_Q a$. Match to QCD with $m_Q a$ -dependent coefficients. Small $m_Q a$ limit is light quarks. Large $m_Q a$ limit is NRQCD.

4. Wilson/clover quarks : Same action as above but work only at small ma (OK for m_c ?). Extrapolate to large $m \Rightarrow$ large errors and expensive. Anisotropic lattices may be better. (fine $a_t \Rightarrow$ small ma_t even with large a_s). See X. Liao parallel talk.

Results on the spectrum

1. $b\overline{b}$ (Υ) spectrum (UKQCD collaboration - Marcantonio et al)

Radial and Orbital Splittings in the $b\overline{b}$ system

--- Experiment

- : NRQCD for the *b*, glue: $n_f = 0, \beta = 6.0$.
- : NRQCD for the *b*, glue: $n_f = 2$, *clover*, $\kappa = 0.135$, $\beta = 5.2$, UKQCD ensemble.

---: Experiment

- : NRQCD for the *b*, glue: $n_f = 0, \beta = 6.0$.
- : NRQCD for the b, glue: $n_f = 2, clover, \kappa = 0.135, \beta = 5.2, UKQCD$ ensemble.
- \downarrow : extrapolate to light dynamical mass and to $n_f = 3$.

Hyperfine splitting sees dynamical quarks. Predict $m(\Upsilon) - m(\eta_b) = 60 \pm 15$ MeV. Aim for 1 - 2 % error for CLEO-c. 2. $c\overline{c}$ (ψ) spectrum

Columbia results (Chen et al) on anisotropic lattices in the QA, including $c\overline{c}g$ hybrids.

3. *b*-light (*B*) spectrum

NRQCD results in the QA (Hein et al).

4. *b*-light-light baryon spectrum

NRQCD results in the QA (Ali Khan et al) for udb, usb, ssb states.

Quark masses

 m_b fixed s.t. B or Υ mass correct. Best determination is from B in static limit in QA.

$$\overline{m}_b(\overline{m}_b) = Z_{cont}(m_B - E_B(\vec{p} = 0) + E_0)$$

 Z_{cont} and E_0 known in pert. th. through α_s^3 . 'World average' is 4.30(10) GeV. (Ryan, LAT01) $m_b \approx 50$ MeV smaller unquenched (?) New non-pert methods in progress (Sommer et al).

 m_c from ψ and α_s^2 lattice mass renorm for nonrel. case (LAT01: Juge et al) $m_c(M_c) = 1.28(4)$ GeV, QA m_c from D_s and non-pert renorm. for rel. case (Becirevic et al) $m_c(m_c) = 1.26(13)$ GeV, QA.

Determining *B* matrix elements

1. f_B Simplest 2pt m.e. for B leptonic decay.

 $< 0|A_{\mu}|B > = p_{\mu}f_B$ Has improved a lot with time (QA).

Match A_{μ} on lattice to continuum. Done to $\mathcal{O}(\alpha_s, 1/m_Q, a)$ for NRQCD and heavy Wilson. Typical error 'budget':

Source	percent
statistical + interp.	3
disc. $O((a\Lambda)^2)$	4
pert. $O(\alpha_s^2, \alpha_s^2/(aM))$	7
NRQCD $O((\Lambda/M)^2, \alpha_s \Lambda/M)$	2
light quark mass	+4
$a^{-1}(m_{ ho})$	4
Total	10

World averages (Ryan, LAT01) $f_B^{(QA)} = 173 \pm 23$ MeV, 20% larger unq. ? $f_{D_s}^{(QA)} = 203 \pm 14$ MeV $f_{B_s}/f_B = 1.15(5)$; $f_{D_s}/f_D = 1.16(4)$ Need to reduce pert. errors by $\mathcal{O}(\alpha_s^2)$ calcs/ non-pert. techniques.

2. *B*_{*B*}

Matrix element for 'box' diagram for $B^0 - \overline{B}{}^0$ mixing – becomes m.e. of 4-q operator from H_W . Convenient to take ratio to f_B^2 , call result B_B .

 $\Delta m_B \propto |V_{tb}^* V_{tq}|^2 f_B^2 B_B.$

World averages (Ryan, LAT01, Bernard, LAT00): $\hat{B}_{B_d} = 1.30(12)(13); f_{B_d}\sqrt{\hat{B}_{B_d}} = 230(40) \text{ MeV}.$ $\hat{B}_{B_s}/\hat{B}_{B_d} = 1.01(3);$ $\xi \equiv \frac{f_{B_s}\sqrt{\hat{B}_{B_s}}}{f_{B_d}\sqrt{\hat{B}_{B_d}}} = 1.16(5)$

3. B SL decay.

Matrix elements needed for determination of V_{ub}, V_{cb} .

 $B \to D^{(*)}$ decay.

Heavy quark symmetry very useful here \rightarrow study matrix element as function of $\omega = v_B \cdot v_D$. Form factor then has universal shape to a good approx. = Isgur-Wise function.

(UKQCD - rel. c quarks)

exptl rate $(v_B \cdot v_D = 1) = |V_{cb}|^2 \mathcal{F}(1)$. FNAL LAT01(Hashimoto et al): $\mathcal{F}_{B \to D^*}(1) = 0.913(30)$. (QA) gives $V_{cb} \times 10^3 = 38.7 \pm 1.8 \pm 1.5$ (LEP). $B \rightarrow \pi, \rho$ decay.

Lattice calculations (all QA) work at small \vec{p}_{π} , far from physical region. Require extrapolation, interpolation, etc. Smooths out v. rough raw data. More work is needed.

Soft pion theorem $f_0(q_{max}^2) = f_B/f_{\pi}$ doesn't work well. Chiral extrapolations to light quark masses very important.

Future

- MILC collab. using improved staggered quarks → can simulate light dyn. quarks with Tflop computers in next few years.
- CLEO-c will determine Υ, ψ, D physics to high precision.

Lattice calcs must improve systematic errors to 2-3%.

- Improve heavy quark actions, higher rel. corrns and better match to continuum.
- Improve matching of matrix elements using automated pert. th. (Trottier, Horgan)
- Simulate with light dynamical quarks and match to chiral pert. theory.