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• Review lattice methodology
• Study of confinement mechanisms
• Spectroscopy results:

– Quenching effects 
– Quenched and dynamical light quark spectroscopy
– Importance of chiral extrapolations
– Adding electromagnetic interactions

• Computing resources



Regularization of QCD on a lattice

• Approximate continuous space--time with a 4-dim lattice, and derivatives by 
finite differences. 

• Quarks are put on sites, gluons on links. Gluons represented by 3x3 complex 
unitary matrices Uµ (x) = exp(iga Aµ(x)) elements of the group SU(3).
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• Gaussian integration over anti-
commuting fermion fields ψ
resulted in det(M(U)) and M-1(U)
factors.

• Gauge action composed of U
fields. Approximates continuum:
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Monte Carlo Methods
• On a finite lattice need to compute integral over large, but finite, number U-

fields. Can be done numerically, though not by direct integration.
• Stochastic Monte Carlo method: generate series of configurations Uµ

(i)(x)
distributed with probability exp(-SG(U))det(M(U))/Z and compute expectation 
values as averages over those configurations:

• Statistical errors go like  1/sqrt(N),  for N configurations 
• The det(M(U)) factor is a big computational cost since the matrix M is order 

VxV, though it is sparse.
• Quenched approximation: set det(M) = 1, e.g., neglect internal quark loops.
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Statistical and Systematic Uncertainties

• Procedure is in principle exact after systematic errors are controlled 
• Statistical uncertainties: 

– Statistical errors go like  1/sqrt(N),  for N configurations.
– Including determinant, cost of producing each configuration O(100) times 

more expensive.

• Systematic uncertainties:
– Finite volume: lattice box must hold a hadron state, typically L ~ 2fm or 

more. Need  MpL ~ 4 (several pion Compton wavelengths)
– Chiral extrapolations: calculations with small quark masses expensive –

extrapolate observables to physical quark mass region (delicate!).
– Discretization effects: inherent O(a) or O(a2) lattice uncertainty. Must 

extrapolate to continuum limit (a → 0) to recover physical quantities.



Confinement and Model Predictions - Static Quark Potentials 

• Many models propose different mechanisms 
for confinement

• Static quark potential (potential between 
infinitely massive quarks forming mesons) 
in different representations can discriminate 
among the models

• Perturbative Casimir scaling hypothesis well 
describes non-perturbative lattice data:

for Casimir CD in representation D=3,6,8,…
• Claimed to rule out models like Bag and 

Instanton – scaling different
• Flux tube counting also inconsistent
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Static Baryon Potential

• For SU(N) baryons, form N quarks in a gauge 
invariant quark state

• What is the area law behavior? Test two 
ansatze: Y-law and ∆-law
– Y-law: energy comes from flux tubes of 

shortest length join quarks. Area looks 3-bladed 
(N=3) joining at center. Looks like a Y. Length 
of flux tubes LY

– ∆-law: energy composed of surfaces among all 
quark line pairs. Looks a delta. Length L∆

• Data consistent with ∆-law – sum of 2 body 
quark potentials. Similar result for N=4

• Simonov argues impossible: field strength 
depleted near Y junction – lowers potential

• Should check using adjoint sources!
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Hadron Spectrum – Benchmark of Lattice QCD

• Spectrum of lowest lying states is the 
benchmark of LQCD

• Most extensively pursued lattice 
calculation

• Quenched spectrum agrees with 
experiment to 10%

• Inconsistency in meson sector 
apparently resolved in full QCD

• Systematic uncertainties:
– Finite volume: V Æ∞
– Continuum extrapolation: a Æ 0
– Chiral extrapolations: MPSÆ Mp

• Quenching effects – to some degree 
controllable/understandable???

UKQCD, 99



Problem of Chiral Symmetry

• Naive lattice discretization of free Dirac operator

• In momentum space

• Has additional zeros at all corners of the Brillouin zone, e.g. 
a*pµ=0,…,π – infamous doubling problem. Can lift doublers – add a 
Laplacian term that breaks chiral symmetry.

• Nielson-Ninomia no-go theorem – cannot avoid both doubling and 
chiral symmetry breaking with a local, hermitian action analytic in 
gauge fields. Major theoretical problem.

• Problem has been solved with recent advent of chiral fermion actions 
(e.g., Domain-Wall fermions). Crucial for matrix elements. Needed for 
spectroscopy??
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Scaling – Continuum Limit

• Renormalization theory tells us 
that breaking a symmetry leads 
to induced quantum terms in an 
action.

• Wilson fermion action has O(a) 
scaling from breaking chiral 
symmetry.

• Can rigorously add a dimension 
5 operator (hyper-fine term) to 
improve scaling from O(a) to 
O(a2)

• Scaling violations dramatically 
reduced – mostly from 
improving chiral symmetry.
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Quenched Pathologies in Hadron Spectrum

• How well is QCD described by an effective chiral theory of interacting 
particles (e.g., pions in chiral dynamics)?

• Suppressing fermion determinant leads to well known pathologies as 
studied in chiral pertubation theory (Bernard, Golterman, Sharpe)

• Missing vacuum contributions to disconnected piece of singlet correlator 
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• Manifested in η′ propagator missing vacuum contributions. E.g., 

( ) ( )5 5 2 22 2
2

0
1 1Tr , Tr 0,0 P PG x x G f f

p m p m
m

π π

γ γ → +
+ +

…

• New divergences arise. One idea is to incorporate knowledge of 
divergences in calculations and then extract useful information



Anomalous Chiral Behavior

• Compute η′ mass insertion from behavior in 
QχPT

• Hairpin correlator fit holding mπ fixed - well 
described by simple mass insertion
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• fP shows diverging term. Overall δ=0.059(15)
• m0 = 680(30) MeV , χPT gives 850MeV. 

Still O(a) errors

Hairpin correlator
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“Decay” in Quenched Approximation
• Dramatic behavior in Isotriplet scalar particle 

a0 — η-π intermediate state
• Construct a0 propagator from chiral lagrangian

including couplings between η-π states and 
rescattering states which can be resummed

• Lightest a0 propagator fairly well described by 
1-loop resummed bubble term with η mass 
insertion fixed 

• Find mass  a0 = 1.34(9) GeV. Still O(a) errors
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Decay in Full QCD

• MILC: evidence of (S-wave) decay in a0 Æ ηπ in a Nf=2+1 calculation
• 3-flavor mass follows quenched then drops below. Decay not computed
• What is a decay? Subtle

– Most straightforward way is for mass exactly at threshold
– Compute all 2-point correlators CH-H’ for H=a0 , ηπ
– For m(a0) = m(ηπ), can compute transition amplitude  < a0| ηπ> for large time 

separations from ratios of CH-H’



Quenched Spectroscopy
Quenched ΧPT predictions for pseudoscalar, vector mesons, and decuplet baryons
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• Large Wilson fermion calculation 
by CPPACS (Tsukuba) (99)

• Some evidence for quenching 
effects: more clearly seen in 
pseudoscalar channel

• Masses computed at 4 lattice 
spacings. Lattice sizes ranging up 
to 643x112 for a 3.2fm box.



Mass Predictions from Quenched Spectroscopy

• After chiral extrapolation, another extrapolation to continuum limit
• Fix scale at each coupling from experimental π, ρ, and K (or φ) masses
• Quenched spectrum systematically deviates from experiment. Typically 

5% too small.
• Calculation ~ 50 Gigaflop-year



Meson Mass Predictions from Dynamical Fermions

• CPPACS: Nf=2 dynamical
calculation. 4 quark masses at 3 
couplings. Box sizes about 2.5fm 

• Consistent results between original 
quenched calculations. Systematic 
deviation from experiment.

• Nf=2 calculation agrees within 1% 
of experiment – sea quark effects 
important.

• Increased hyperfine splitting 
consistent with suppressed spin-
spin coupling in quenched from 
faster running of coupling.

• Calculation ~ 1 Teraflop-year
CPPACS, 2000



Baryon Mass Predictions from Dynamical Fermions

• CPPACS: Nf=2 dynamical sea 
quark effects not as apparent

• N and ∆ mass high, but other 
masses consistent.

• Box sizes about 2.5fm. Worry 
finite-volume effects large. 

• Octet and decuplet chiral 
extrapolations have many 
parameters.



Improved Chiral Extrapolations

Self-energy contributions

• Adelaide group – extensively studying 
higher order chiral PT effects on hadronic 
quantities

• Basic upshot – naïve chiral extrapolations 
just too naïve!!

• Incorporate leading non-analytic behavior 
from heavy baryon cPT: BÆB´ pÆB for 
B=N,D

• Leading order:

• Bad approx at moderate mp. Use form-
factor
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Comparing Quenched and Full QCD Chiral Extrapolations

• Compare MILC quenched and Nf=2+1 
staggered spectrum:

• Note: SB not 0 in chiral limit. Fit parameters 
for quenched and full. Here a is not chiral 
limit mass. In chiral limit, full N mass still 
near 1GeV

• Supports claim dominant effects of 
quenching attributed to first order meson 
loop corrections

Young, Leinweber, Thomas, Wright, 2001

Quenched BΣ*

* Full BΣ

∆

∆

N

N
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0.71(11)1.45(4)0.85(6)1.23(2)Quenched

0.75(8)1.43(3)0.92(5)1.24(2)Full

bDaD (GeV)bNaN (GeV)



(Quenched) Electromagnetic Splittings

• Determination of N-P splitting long standing problem. 
• Virtual photon effects mass splittings within isomultiplets comparable 

to up-down quark mass difference. 
• Accurate computations of isospin splitting must include EM effects.
• A first generation calculation (quenched) including U(1) gauge fields.

– Assign electric charges to quarks
– Use cPT in both SU(3) and U(1). Scale electric charge large(r) 
– Estimate final volume and meson cloud effects from cPT

• Results surprisingly reasonable. Finite volume corrections large.

6.4(6)5.68(24)+0.10+0.864.72(24)X- - X0

1.70(15)2.16(19)-0.11+1.660.61(19)S+ + S- - 2S0

4.88(10)4.63(36)-0.27+0.864.04(36)S- - S0

3.18(10)2.47(39)-0.16-0.803.43(39)S0 - S+

1.2931.55(56)-0.53-0.752.83(56)N - P

Physical 
splitting

Total latticeMeson 
cloud

Finite 
volume

Raw latticeLevel 
splitting

MeV

Duncan, Eichten, Thacker, 96



Excited Baryons

• Describing N* spectrum gives vital clues 
about dynamics of QCD and hadronic
physics
– Role of excited glue
– Quark-diquark picture
– Quark interactions

• Open mysteries:
– Nature of Roper?
– L(1405) mass?
– Missing resonances?

• History of lattice studies of excited 
baryons quite brief. Recent work using 
improved gauge and fermion actions

• As spin increases, baryon spin rep. 
occurs in multiple lattice representations.

Lattice Representations
Continuum spin reducible under 
three irreducible ray representations 
of the cubic group

Rep. Continuum spin reps
G1 1/2, 7/2, …
H 3/2, 5/2, 7/2, …
G2 5/2, 7/2, …



Parity

Negative parity interpolation operators:
• Measure three local interpolating operators for the proton:

• N1(N2) connects upper (lower) spinor components in diquark piece -
N2 vanishes in NR limit

• D3/2,1/2 = eijk(ui
TCgmuj) uk - Spin projection

• Quark model suggests a better interpolation operator for N1/2- have a covariant 
derivative in the valence quark

• On lattice (anti)-periodic in time, have both positive and negative 
parity states. Fit proton correlation function at each end of lattice to 
obtain the respective masses.
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How Crucial is Chiral Symmetry?

• If we had unbroken chiral summetry, 
N1/2+ and N1/2- would be degenerate

• Chiral symmetry crucial: Do we 
require “lattice” chiral symmetry?

• Apparently no – compare Wilson with 
O(a) c breaking terms; Non-
Perturbatively imp. Clover with O(a2) 
c breaking terms; Domain Wall 
(almost) no c breaking terms, but 
O(a2) discretization errors. 

• Some mixing of results with 
discretization errors here – similar 
mass splitting of 400 MeV for each 
action.

• In large Nc, mass splitting comes 
from l=1 to l=0 (S-P splitting) –
reproduced by O(a) Wilson action. 

Various Adelaide, Jlab, UKQCD, 2001 

1N interpolating field

1/ 2 1/ 2Quenched andN N+ −



Roper

• Compare N1/2+ with first (radially) 
excited state (Roper)

• Large mass splitting. Excited state 
higher than N1/2- . Other channels 
similar.

• Possible (but unlikely) strong mp

dependence. More likely bad overlap 
of N2 with excited state. Excited state 
masses notoriously difficult. Need 
anisotropic lattices – greatly 
improves signal

• Concern: small physical volume of 
1.6fm for DWF and 2.0fm for others 
– can squeeze up excited state since 
larger in size

1/ 2 and excitationN +

2N interpolating field

Various Adelaide, Jlab, UKQCD, 2001 



Other Excited States

• In recent works, generically see too large splitting among pos. parity –
excited state and too small in neg. parity. Quite possibly too small 
volume (2fm) – by quark model l=1 twice as large as l=0.

• Splitting not as large in L channel

Adelaide, 2001



Delta

• I=3/2, J=3/2 Delta (2.1fm). Splitting probably also high – new chiral 
extrapolation??!!

Jlab/UKQCD, 2001



Exotics and Hybrids

• Exotics: big focus of JLab (and lattice group!)
– Spin exotic mesons are JPC states not accessible in quark model
– Characterized by excited glue or perhaps four-quark states

• Several lattice calculations of heavy hybrid and exotic meson states 
• Lattice calculations of light exotic meson states still first generation 

(noisy)!
– Lightest 1-+ exotic roughly 2GeV
– Considerably higher than experimental candidates 1.4, 1.6 GeV

• No baryon exotics! 
• Baryon hybrids? Model questions. 

– Gluonic versions of baryons one of many states induced
– Study of baryon potentials might provide good insight



Lattice Hadron Physics Collaboration (LHPC)

• JLab/MIT and 8 other universities. Over 20 senior physicists
• Four identified physics goals:

– Nucleon structure
– Spectroscopy – N* , Hybrids, glueballs
– Hadron-Hadron interaction
– Fundamental aspects of QCD (e.g., mechanisms of confinement)

• Computing resources:
– Small clusters of workstations and a QCDSP
– Currently awaiting purchase of 200 node box dual Pentium 4 cluster –

expect to sustain > 200 Gigaflop/sec



SciDAC

Scientific Discovery through Advanced Computing
• DOE program supporting national effort by US lattice community to 

develop software and hardware infrastructure for next generation
computers

• Physics efforts centered around JLab (hadron physics), FNAL (weak 
matrix elements), BNL (high temperature)

• Current funding only supports software developers – around $2M to 
Jlab over 3 years

• Currently awaiting purchase of 200 node box dual Pentium 4 cluster –
expect to sustain > 200 Gigaflop/sec

• Goal is a coordinated three 10 Terflop/sec computing facilities for 
national community by 2005.

• US lattice resources greatly lagging other countries!



Conclusions

• First generation lattice calculations of excited baryon spectroscopy
• Precise calculations commmensurate with experimental program 

require:
– Measure of large number of correlators
– Sufficiently light pions to resolve pion cloud
– Large physical volumes
– Continuum extrapolation
– Full QCD

• State-of-the-art calculations require ~ 100 Gigaflop-year in Quenched 
QCD and ~ 1 Teraflop-year in full QCD.
– Required resources not available to US lattice community
– Focus of interest on weak-matrix element calculations 
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