

• Structure Functions:

$$P_{LL}(q_{cm}) = -2\sqrt{6} M_N G_E(\tilde{Q}^2) P^{(01,01)0}(q_{cm})$$

$$P_{TT}(q_{cm}) = -3 G_M(\tilde{Q}^2) \frac{q_{cm}^2}{\tilde{q}_0} \times \left[P^{(11,11)1}(q_{cm}) - \sqrt{2}\tilde{q}_0 P^{(01,12)1}(q_{cm}) \right]$$

$$P_{LT}(q_{cm}) = \sqrt{\frac{3}{2}} \frac{M_N q_{cm}}{\tilde{Q}} G_E(\tilde{Q}^2) P^{(11,11)0}(q_{cm}) + \frac{3}{2} \frac{\tilde{Q} q_{cm}}{\tilde{q}_0} P^{(01,01)1}(q_{cm})$$

• in an unpolarized VCS experiment:

 $d\sigma(ep\gamma) = d\sigma(\text{BH+Born}) + (PhaseSpace) \times$

$$\left[v_1 \left[P_{LL}(q_{cm}) - \frac{1}{\epsilon} P_{TT}(q_{cm}) \right] + v_2 \left[P_{LT}(q_{cm}) \right] + O(q'_{cm}) \right]$$

 $v_1, v_2 =$ known kinematic functions of $q_{cm}, \epsilon, heta_{\gamma\gamma cm}, \phi_{\gamma\gamma}$.

• At fixed q_{cm} and ϵ , one measures two structure functions : $P_{LL} - P_{TT}/\epsilon$ sensitive to electric GP $\alpha(Q^2)$ P_{LT} sensitive to magnetic GP $\beta(Q^2) \rightarrow$ to be compared to Model predictions

B.Pasquini, M.Gorchtein, D.Drechsel, A.Metz, M.Vanderhaeghen (*Eur. Phys. J. A 11 (2001) 185*)

• Dispersion integrals:

- $\gamma^* N \rightarrow \pi N$ taken from MAID2000
- Asymptotic parts and contributions beyond πN
- two free parameters: Λ_{α} , Λ_{β} related to polarizabilities α and β :

$$\alpha(Q^2) - \alpha^{\pi N}(Q^2) = \frac{\alpha_0^{exp} - \alpha_0^{\pi N}}{(1 + Q^2/\Lambda_{\alpha}^2)^2} , \qquad \text{same relation for } \beta$$

• no q'_{cm} expansion; DR $(\gamma^* p \to \gamma p)$ cross section includes all orders in q'_{cm} • limited to $\sqrt{s} = W \le (M_N + 2m_\pi)$, and not limited to small Q^2

VCS at Low Energy : experiments					
where	Q^2 (GeV ²)	(γ^*p) c.m. energy \sqrt{s}	$p \operatorname{cone}_{\theta_{pq}}$	data taking	status (@ end 2001)
MAMI A1 Coll.	0.33	$< (M_N + M_\pi)$	10 °	1995+97	published
JLab (A) E93-050	1.0, 1.9	< 1.9 GeV	6°, 3 °	1998	final stage
Bates E97-03	0.05	$< (M_N + M_\pi)$	28° 00ps	2000	analysis
Bates E97 -05	0.12	$\sim 1.232~{\rm GeV}$	14-20° OOPS	2001	analysis

- **Detection:** magnetic spectrometers (γ = missing particle)
- High Resolution: separate γ and π^0 missing mass peaks
- accurate measurement of absolute cross sections $d^5\sigma(ep \rightarrow ep\gamma)$

(good knowledge of acceptance) (effect of GPs is small)

BATES E97-03 VCS experiment

• Status: analysis in progress (data taking: year 2000) 2001 spectrometer optics studies (sieve-slit in OHIPS) Missing mass γ peak, proton spectrometers MC studies 2002 MC studies, normalization of data

• Lab achievement:

1st use of high duty factor beam in South Hall Ring 1st use of full OOPS system

Set I	$Q^2 = 1.0 \text{ GeV}^2$	\sqrt{s} mostly below pion threshold \sqrt{s} mostly below pion threshold Resonances: $1.0 < \sqrt{s} < 2.0$ GeV	100000 events
Set II	$Q^2 = 1.9 \text{ GeV}^2$		46000 events
Set III	$Q^2 = 1.0 \text{ GeV}^2$		28000 events

• Key points of experimental analysis:

 \star (I,II) vicinity of elastic peak \Rightarrow CUTS (punchthrough protons)

***** accurate **Monte-Carlo** for solid angle calculation

- reproduce experimental resolution
- include radiative corrections
- use realistic input cross section

• Advantages:

- \star Lorentz boost \rightarrow large acceptance w.r.t. outgoing photon phasespace
- \star several methods to extract structure functions $P_{LL} P_{TT}/\epsilon$ and P_{LT}

Absolute normalisation : under control at the \sim 2 % level

- Elastic (*ep*) cross sections
- $(ep\gamma)$ cross sections at low q'_{cm}
 - \star almost no GP effect
 - * χ^2 test between [*renorm.factor*] × $d\sigma_{exp}$ and $d\sigma_{BH+Born}$ (+GPs)
 - \star reduced $\chi^2 \sim 1~~{\rm and}~~|renorm.factor-1.00| \leq 0.02$

Choice of proton EM Form Factors (in $\sigma_{BH+Born}$) :

- \star G_M^p param.of Bosted (P.Bosted, Phys.Rev. C 51 (1995) 409)
- $\rightarrow \star$ G_M^p param.of Brash et al. differs by 1.8 (2.4) % at $Q^2 = 1(2)$ GeV² (E.Brash et al., hep-ex/0111038)
- $\rightarrow \star \ \mu G_E/G_M$ from JLab expt (O.Gayou et al., Phys.Rev.Lett.88:092301,2002)

JLab-E93050. fit of Generalized Polarizabilities by Method A

JLab E93-050 VCS in the Resonance Region

• excitation scan in $W = \sqrt{s}$, from M_N to 1.9 GeV

- 1st measurement of 5-fold $d\sigma(ep\gamma)$ in this channel
- see how resonances show up (missing res.?)

- fixed
$$Q^2 = \mathbf{1} \; \mathbf{GeV}^2$$

- backward angle $\theta_{\gamma\gamma cm}$ (keep Bethe-Heitler small)

E93050 - Photon Electroproduction versus Phi and W

5-fold cross section: $d^5\sigma(ep \rightarrow ep\gamma)/dk'_{lab}d\Omega_{elab}d\Omega_{\gamma\gamma cm}$ at $Q^2 = 1 \text{ GeV}^2$, $\theta_{\gamma\gamma cm} = 167.2^{\circ}$

Principle:

- make a chisquare between experimental cross sections and cross sections given by DR model
- adjust the free parameters by minimizing chisquare

at
$$Q^2 = 1 \text{ GeV}^2$$

$$P_{LL} = +1.85 +/-0.24(stat) +0.30-0.49(syst) GeV^{-2}$$

 $P_{TT} = -0.418 GeV^{-2}$ (given by the model)

$$P_{\rm LL} - P_{\rm TT} / 0.95 = +2.29 +/- 0.24 (stat) GeV^{-2}$$

$$P_{LT} = -0.53 +/-0.12(stat) +0.16-0.03(syst) GeV^{-2}$$

(JLab: Preliminary)

$$P_{LL}(q) - P_{TT}(q)/\epsilon$$

Q^2	q_{cm}	ϵ	Structure function
(GeV^2)	(MeV/c)		(GeV ⁻²)
0.33	600	0.62	LET: +23.7 \pm 2.2 (stat) \pm 4.3 (syst)
1.0	1080	0.95	LET: +2.31 \pm 0.22(stat) \pm 0.35(syst) \pm •
	1133	0.95	DR : +2.29 \pm 0.24(stat) $^{-0.49}_{+0.30}$ (syst)
1.9	1600	0.88	LET: +0.56 \pm 0.07(stat) \pm 0.11(syst) \pm •
	1600	0.88	DR: [+0.43,+0.84]

 $P_{LT}(q)$

Q^2 (GeV ²)	q_{cm} (MeV/c)	ϵ	Structure function (GeV ⁻²)	
0.33	600	0.62	$LET: - 5.0 \qquad \pm 0.8 (stat) \ \pm 1.8 (syst)$	
1.0	1080	0.95	LET: -0.42 \pm 0.11 (stat) \pm 0.02(syst) \pm •	
	1133	0.95	DR : $-$ 0.53 \pm 0.12(stat) $^{-0.03}_{+0.16}$ (syst)	
1.9	1600	0.88	LET: +0.009 \pm 0.041(stat) \pm 0.005(syst) \pm •	
	1600	0.88	DR : [-0.05,+0.02]	

High W: comparison VCS/RCS

Related topics neutron Generalized Polarizabilities ? neutron polarizabilities (at $Q^2 = 0$) poorly known: $\alpha_n = (1.20 \pm 0.15 \pm 0.20) \times 10^{-3} fm^3$ J. Schiedmayer et al., PRL 66 (1991) 1015 (discussed $\rightarrow \leq 2.10^{-3} fm^3$) $\alpha_n = (0.8 \pm 1.0) \times 10^{-3} fm^3$ L.Koester et al., Z.Phys. A 329 (1988) 229 $\alpha_n = (0.0 \pm 0.5) \times 10^{-3} fm^3$ L.Koester et al., Phys.Rev. C 51 (1995) 3363 $\beta_n = ?$ isospin-averaged nucleon polarizabilities: $\alpha - \beta \ = \ (2.6 \pm 1.8) \times 10^{-4} \ fm^3$ D.Hornidge et al., PRL 84 (2000) 2334

- nucleus GPs ?
- pion GPs, and all other hadrons ...

