ELECTROMAGNETIC TESTS OF CHIRAL SYMMETRY

Harald Merkel A1 COLLABORATION

- Introduction
 - Chiral Perturbation Theory
- Threshold π^0 production off the Proton
 - Photo production (MAMI, SAL)
 - Electro production (NIKHEF, MAMI)
 - ► Low 4-momentum transfer $Q^2 = 0.05 \, GeV^2/c^2$
 - Polarization structure functions
- Coherent π^0 production off the Deuteron
 - Photo production (SAL)
 - Electro production (MAMI)
- Summary

Symmetries of QCD

Starting point: QCD Lagrangian

$$\mathcal{L}_{QCD} = \sum_{f} \overline{q}_{f} (iD_{\mu}\gamma^{\mu} - m_{f})q_{f} - \frac{1}{4} \sum_{\alpha=1}^{8} G^{\alpha}_{\mu\nu} G^{\mu\nu,\alpha}$$

- Strong interaction (completely?) determined
- No analytic solution in confinement range $E < 1 \,\mathrm{GeV}$
- Hadrons as $q\bar{q}$ or qqq states
 - Quark masses 1% of proton mass
 - ► Hadron spectrum from $SU(3)_{flavour}$
 - Resonance structure of nucleons

Access at $E < 1 \,\text{GeV}$: Symmetries

- Local Gauge Symmetry, C, P, T, etc.
- Chiral Symmetry $\mathbb{SU}(3)_L \times \mathbb{SU}(3)_R$
 - ► Chiral limit $m_u, m_d, m_s \rightarrow 0$:

$$\mathcal{L}_{QCD}^{0} = \sum_{u,d,s} \left(\overline{q}_{R,f} i D_{\mu} \gamma^{\mu} q_{R,f} + \overline{q}_{L,f} i D_{\mu} \gamma^{\mu} q_{L,f} \right) - \frac{1}{4} \sum_{\alpha=1}^{8} G_{\mu\nu}^{\alpha} G^{\mu\nu,\alpha}$$

- \blacktriangleright Not visible \Rightarrow spontaneous broken symmetry
- Goldstone theorem: 8 massless bosons
- Identified as 8 pseudo scalar mesons

Chiral Perturbation Theory

Recipe for an "Effective Field Theory":

- Choose effective degrees of freedom: Nucleons, Pions
- Most general Lagrangian
- Symmetries of \mathcal{L}_{QCD}^{0}
- Expansion in masses: Symmetry broken by $-\overline{q}_f M q_f$
- Simultaneous expansion in p, q^2
- "Power counting"

Problems:

- Degrees of freedom: Resonances?
- Limited range in p, q^2
- Regularization ⇒ Low Energy Constants (LEC) Determined by experiment
- Convergence

Pion photo and electro production

$$\gamma^{(*)} + p \rightarrow \pi^0 + p$$

- Test of Chiral Perturbation Theory
 - Direct production of Goldstone Bosons
 - QED: photon coupling well known
 - ▶ π^+ production dominated by charge $\Rightarrow \pi^0$
- Threshold production
 - Expansion in small momenta
 - Only s- and p wave multipoles contribute

$$\frac{d\sigma}{d\Omega} = \frac{q}{k} \left(A + B \cdot \cos \theta + C \cdot \cos^2 \theta \right)$$

$$A = E_{0+}^{2} + P_{23}^{2} \qquad P_{1} = 3E_{1+} + M_{1+} - M_{1-}$$

$$B = 2 \cdot Re(E_{0+}P_{1}^{*}) \qquad P_{2} = 3E_{1+} - M_{1+} + M_{1-}$$

$$C = P_{1}^{2} - P_{23}^{2} \qquad P_{3} = 2M_{1+} + M_{1-}$$

$$P_{23} = \frac{1}{2}(P_{2}^{2} + P_{3}^{2})$$

► Known energy dependence $P_i(q) \sim q \cdot k$

- Theory
 - $\blacktriangleright E_{0+}$ slow convergence
 - P_1, P_2 "new Low Energy Theorems"
 - $\blacktriangleright \frac{P_3}{P_3}$ fit to data

Unitary Cusp

- Pion pole dominance \Rightarrow strong $\gamma + p \rightarrow n + \pi^+$
- Charge exchange amplitude

ChPT: Chiral Perturbation theory: V. Bernard *et al.*, Nucl. Phys. **B 383** (1992) 442 DR: Dispersion Relations: O. Hanstein *et al.*, Phys. Lett. **B 399** (1997) 13

Tagged Photon Facility

- Energy range: 5%–94% of electron energy
- Energy resolution: $\Delta E_{\gamma} = 2 \text{ MeV}$ at $E_0 = 855 \text{ MeV}$
- Timing resolution: 1 ns
- Maximum count rate: 10⁸ photons/s
- Luminosity (Target: 10cm H_2) $L > 40 \frac{\text{Hz}}{\mu \text{barn}}$

TAPS at MAMI

Differential Cross Section

Fit of A,B,C to Differential Cross Section

Photo production

$$\sigma(\theta) = \frac{q}{k} \left(\mathbf{A} + \mathbf{B} \cdot \cos \theta + \mathbf{C} \cdot \cos^2 \theta \right)$$
(1)

A	=	$E_{0+}^2 + \frac{1}{2}(P_2^2 + P_3^2)$	$P_1 = 3E_{1+} + M_{1+} - M_{1-}$
B	=	$2 \cdot Re(\tilde{E}_{0+}P_1^*)$	$P_2 = 3E_{1+} - M_{1+} + M_{1-}$ $P_3 = 2M_{1+} + M_{1-}$
С	=	$P_1^2 - \frac{1}{2}(P_2^2 + P_3^2)$	

$$\sigma(\theta) \Rightarrow ReE_{0+}, P_1, (P_2^2 + P_3^2)/2$$

$$\sigma(\theta, \phi) = \sigma(\theta) \left[1 - P_{\gamma} \cdot \Sigma(\theta) \cdot \cos 2\phi \right]$$
(2)
$$\Sigma(\theta) \sim \frac{1}{2} (P_3^2 - P_2^2)$$

$$\Sigma \Rightarrow (P_3^2 - P_2^2)/2$$

	E_{0+}	P_1	P_2	P_3
	$[10^{-3/m_{\pi}}]$	$[q\cdot k\cdot 10^{-3}/m_{\pi}^3]$	$[q \cdot k \cdot 10^{-3}/m_{\pi}^3]$	$[q \cdot k \cdot 10^{-3}/m_{\pi}^3]$
MAMI	-1.31±0.08	10.02±0.2	-10.5±0.2	13.1±0.1
SAL	-1.32±0.05	10.26±0.1		
ChPT	-1.16	10.33±0.6	-11.0±0.6	11.7±0.6
DR	-1.22	10.54	-11.4	10.2

Polarized Photon Asymmetry

A. Schmidt et al., Phys. Rev. Lett. 87, 232501 (2001)

 $\sigma(\theta,\phi) = \sigma(\theta) \left(1 - P_{\gamma} \cdot \Sigma(\theta) \cdot \cos 2\phi \right)$

Pion Electro Production

$$\frac{d^{5}\sigma}{d\Omega_{e}dE'd\Omega_{\pi}^{*}} = \Gamma_{t}(\sigma_{T}(\theta) + \varepsilon \cdot \sigma_{L}(\theta) + \varepsilon \cdot \sigma_{T}(\theta) \cdot \cos 2\phi + \sqrt{2\varepsilon(1+\varepsilon)} \cdot \sigma_{TL}(\theta) \cdot \cos\phi + h \cdot \sqrt{2\varepsilon(1-\varepsilon)} \cdot \sigma_{TL'}(\theta) \cdot \sin\phi)$$

- \bullet Additional longitudinal s and p waves
- Interference structure functions
- Multipoles depend on four-momentum transfer Q^2

Experiment: $H(\vec{e}, e'p)\pi^0$

- Detection of recoil proton
- Lorenz boost $\Rightarrow 4\pi$ in spectrometer acceptance
- Small cross section \Rightarrow high luminosity

Kinematics

$\sigma_T(\theta) = \frac{p^*}{k^*} (A + B \cdot \cos \theta + C \cdot \cos^2 \theta)$ $\sigma_L(\theta) = \frac{p^*}{k^*} (A' + B' \cdot \cos \theta + C' \cdot \cos^2 \theta)$	$\sigma_{TL}(\theta) = \frac{p^*}{k^*} (D \cdot \sin \theta + E \cdot \sin \theta \cos \theta)$ $\sigma_{TT}(\theta) = \frac{p^*}{k^*} F \cdot \sin^2 \theta$ $\sigma_{TL'}(\theta) = \frac{p^*}{k^*} (G \cdot \sin \theta + H \cdot \sin \theta \cos \theta)$
$A = E_{0+} ^2 + \frac{1}{2}(P_2 ^2 + P_3 ^2)$ $B = 2 \cdot ReE_{0+}^* \cdot P_1$ $C = P_1 ^2 - \frac{1}{2}(P_2 ^2 + P_3 ^2)$	$A' = L_{0+} ^2 + P_5 ^2$ $B' = 2 \cdot ReL_{0+}^* \cdot P_4$ $C' = P_4 ^2 - P_5 ^2$
$D = -Re(E_{0+} \cdot P_5^* + L_{0+} \cdot P_2^*)$ $E = -Re(P_1 \cdot P_5^* + P_4 \cdot P_2^*)$ $F = \frac{1}{2}(P_2 ^2 - P_3 ^2)$	$G = -Im(E_{0+} \cdot P_5^* + L_{0+} \cdot P_2^*)$ $H = Im(P_1 \cdot P_5^* + P_4 \cdot P_2^*)$

P_1	=	$3E_{1+} + M_{1+} - M_{1-}$	P ₄	=	$4L_{1+}+L_{1-}$
P ₂	=	$3E_{1+} - M_{1+} + M_{1-}$	P_5	=	$L_{1-} - 2L_{1+}$
P_3	=	$2M_{1+} + M_{1-}$			

A1: 3-Spectrometer Setup

Spectrometer A: $\alpha > 20^{\circ}$ p < 735 MeV/c $\Delta \Omega = 28 \text{ msr}$ $\Delta p/p = 20\%$

Spectrometer B: $\alpha > 8^{\circ}$ $p < 870 \,\text{MeV/c}$ $\Delta \Omega = 5.6 \,\text{msr}$ $\Delta p/p = 15\%$ Spectrometer C: $\alpha > 55^{\circ}$ p < 655 MeV/c $\Delta \Omega = 28 \text{ msr}$ $\Delta p/p = 25\%$

A1: Spectrometer A

Momentum resolution:
Momentum acceptance:
Angular acceptance:

 $\delta p/p < 10^{-4}$ $\Delta p/p = 20\%$ $\Delta \Omega = 11.5^{\circ} \times 8.0^{\circ} = 28 \,\mathrm{msr}$ NIKHEF $H(e, e'p)\pi^0$

 $Q^2 = 0.1 \,\mathrm{GeV^2/c^2}$

MAMI $H(e, e'p)\overline{\pi^0}$

 $Q^2 = 0.1 \,\mathrm{GeV^2/c^2}$

$q^2 = -0.10 \text{ GeV}^2/c^2$ $\epsilon = 0.529$

M.O. Distler et al., Phys. Rev. Lett. 80 (1998) 2294.

Results $H(e, e'p)\pi^0$ at $Q^2 = 0.1 \,\text{GeV}^2/\text{c}^2$

- MAMI: M.O. Distler *et al.*, Phys. Rev. Lett. **80** (1998) 2294.
- ChPT: V. Bernard *et al.*, Nucl. Phys. A 607 (1996) 379.

 $Q^2 = 0.05 \,\mathrm{GeV^2/c^2}$

- H. Merkel *et al.*, Phys. Rev. Lett. **88**, 012301 (2002)
- Fit with s-waves = const., p-waves $\sim p_{\pi}^{cms}$
- ChPT, V. Bernard et al., Nucl. Phys. A 607 (1996) 379-401
- MAID, D. Drechsel *et al.*, Nucl. Phys. A 645 (1999) 145-174
 and S. S. Kamalov *et al.*, Phys. Lett. B 522 (2001) 27-36

 $Q^2 = 0.05 \,\mathrm{GeV^2/c^2}$

- H. Merkel *et al.*, Phys. Rev. Lett. **88**, 012301 (2002)
- Fit with s-waves const., p-waves $\sim p_{\pi}^{cms}$
- ChPT, V. Bernard et al., Nucl. Phys. A 607 (1996) 379-401
- MAID, D. Drechsel *et al.*, Nucl. Phys. A645 (1999) 145-174
 and S. S. Kamalov *et al.*, Phys. Lett. **B 522** (2001) 27-36

 $\gamma^* + p \rightarrow p + \pi^0$ Total Cross Section vs. Q^2

- ChPT, V. Bernard et al., Nucl. Phys. A607 (1996) 379-401.

MAID, D. Drechsel *et al.*, Nucl. Phys. A645 (1999) 145-174.
 and S. S. Kamalov *et al.*, Phys. Lett. B 522 (2001) 27-36

• $Q^2 = 0$ A. Schmidt *et al.*, Phys. Rev. Lett. **87**, 232501 (2001). $Q^2 = 0.05 \,\text{GeV}^2/\text{c}^2$ H. Merkel *et al.*, Phys. Rev. Lett. **88**, 012301 (2002). $Q^2 = 0.1 \,\text{GeV}^2/\text{c}^2$ M. O. Distler *et al.*, Phys. Rev. Lett. **80** 2294 (1998).

Multipole amplitudes at threshold

Photon point $Q^2 = 0 \mathrm{GeV^2/c^2}$								
	E_{0+}	L_{0+}	$\hat{P_{23}}^{2}$	\hat{P}_1	\hat{P}_4	\hat{P}_5		
	(10	$^{-3}m_{\pi}^{-1})$	$(10^{-6}m_{\pi}^{-4})$		$(10^{-3}m_{\pi}^{-2})$			
MAMI	-1.33		111	9.5				
ChPT	-1.14	-1.70	105	9.3	-0.6	-0.2		
MAID	-1.16	-1.29	95	9.3	-3.0	2.2		

 $Q^2 = 0.05 \,\mathrm{GeV^2/c^2}$

		Z	0.00000	. / .		
MAMI	0.57	-1.29	100	12.0	0.29 –	1.9
	± 0.11	± 0.02	± 3	± 0.3	± 0.33 \pm	0.3
AmPS		(-)1.57				
		±0.96				
ChPT	0.27	-1.55	353	16.5	-0.72 -	0.2
MAID	0.76	-1.4	250	15.0	-1.75	1.9

 $Q^2 = 0.1 \,\mathrm{GeV^2/c^2}$

MAMI	0.58	-1.38	573	15.1	-2.3	0.1
	± 0.18	± 0.01	± 11	± 0.8	± 0.2	± 0.3
AmPS	1.99	-1.33	526	16.4	-1.0	-1.0
	± 0.3	fixed	± 7	± 0.6	± 0.4	± 0.4
ChPT	1.42	-1.33	571	20.1	-0.6	-0.1
MAID	2.2	-1.12	315	17.1	-1.1	1.4

Interference Structure-Functions

$$\frac{d^{5}\sigma}{d\Omega_{e}dE'd\Omega_{\pi}^{*}} = \Gamma_{t}(\sigma_{T}(\theta) + \varepsilon \cdot \sigma_{L}(\theta) + \varepsilon \cdot \sigma_{T}(\theta) \cdot \cos 2\phi + \sqrt{2\varepsilon(1+\varepsilon)} \cdot \sigma_{TL}(\theta) \cdot \cos\phi + h \cdot \sqrt{2\varepsilon(1-\varepsilon)} \cdot \sigma_{TL'}(\theta) \cdot \sin\phi)$$

Motivation:

- σ_{TT} Separation of transverse *p* waves
- σ_{TL} Separation of longitudinal p waves
- $\sigma_{TL'}$ Unitary cusp at π^+ threshold

 \Rightarrow *ImL*₀₊

Experiment:

- Polarized beam h = 75%
- Out of Plane $\phi_{LAB} = 8^\circ \Rightarrow \phi_{CMS} = 90^\circ$

Extended kinematical range

$$0 MeV/c < p_{\pi}^{*} < 100 MeV/c \ \phi_{CMS} = 0^{\circ}, \ 90^{\circ}, \ -90^{\circ}$$

 \Rightarrow 14 kinematical setups

Interference Asymmetries

$$\frac{d^{5}\sigma}{d\Omega_{e}dE'd\Omega_{\pi}^{*}} = \Gamma_{t}(\sigma_{T}(\theta) + \varepsilon \cdot \sigma_{L}(\theta) + \sqrt{2\varepsilon(1+\varepsilon)} \cdot \sigma_{TL}(\theta) \cdot \cos\phi + \varepsilon \cdot \sigma_{TT}(\theta) \cdot \cos 2\phi + h \cdot \sqrt{2\varepsilon(1-\varepsilon)} \cdot \sigma_{TL'}(\theta) \cdot \sin\phi)$$

$$A_{TL} = \frac{\sqrt{2\epsilon(1+\epsilon)} \cdot \sigma_{TL}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$= \frac{\sigma(\phi = 0) - \sigma(\phi = \pi)}{\sigma(\phi = 0) + \sigma(\phi = \pi)}$$

$$A_{TT} = \frac{\epsilon \cdot \sigma_{TT}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$= \frac{\sigma(0) + \sigma(\pi) - 2\sigma(\pi/2)}{\sigma(0) + \sigma(\pi) + 2\sigma(\pi/2)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$= \frac{\sigma(h = 1) - \sigma(h = -1)}{\sigma(h = 1) + \sigma(h = -1)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}}$$

$$A_{TL'} = \frac{\sqrt{2\epsilon(1-\epsilon)} \cdot \sigma_{TL'}(\theta)}{\sigma_{T}(\theta) + \epsilon \cdot \sigma_{L}(\theta)}}$$

Asymmetrie $A_{TL'}$

$q^2 = -0.05 \text{ GeV}^2/c^2$ $\epsilon = 0.933$

• $A_{TL'}$ consistent with Chiral Perturbation Theory

Neutron Amplitude

- Pion production off the proton
 - Low Energy Constants fixed by experiment
- Pion production off the neutron
 - No further Low Energy Constants
 - Strong prediction of ChPT
 - Additional isospin breaking effects
- Access: Deuteron as neutron target

Fermi momentum \approx reaction momentum

Coherent production

Deuteron structure has to be unfolded
 Measure <u>E_d</u>, try to extract <u>E₀₊^{nπ⁰}</u>

Coherent Photo Production: SAL

- Detection of $\pi^o \rightarrow \gamma \gamma$ with IGLOO Detektor
- Deuteron breakup calculated
- Extrapolation of s wave cross section \rightarrow threshold
- E_d 20% less than Chiral Perturbation Theory

SAL J. C. Bergstrom *et al.*, Phys. Rev. C57,6 (1998) 3203
 ChPT S. R. Beane *et al.*, Nucl, Phys. A618 (1997) 381

Differential Cross Section ($\epsilon = 0.59$)

- I. Ewald et al., Phys. Lett. B 499 (2001) 238-244
 - Three values of photon polarization ϵ \Rightarrow transverse-longitudinal separation
 - Full coverage in azimuthal angle ϕ

L-T Separation

 $\sigma(W,q^2) = \sigma_T(W,q^2) + \varepsilon_L \sigma_L(W,q^2)$

Separation of s and p waves

 \bullet only *s* and *p* waves at threshold

• p waves \sim pion CMS momentum p_{π}^{*}

$$\frac{d\sigma}{d\Omega} = \frac{p_{\pi}^*}{k_{\gamma}^*} \left\{ A + Bp_{\pi}^{*2} + Cp_{\pi}^* \cos\theta + Dp_{\pi}^{*2} \cos^2\theta + \varepsilon_L \cdot (E + Fp_{\pi}^{*2} + Gp_{\pi}^* \cos\theta + Hp_{\pi}^{*2} \cos^2\theta) \right\}$$

Comparison with ChPT

V. Bernard, H. Krebs, U.-G. Meißner, Phys. Rev. C 61 (2000) 58201

- $|E_d|$ to small, consistent with photo production
- $|L_d|$ clear disagreement
- threshold cross section

$$a_0 = |E_d|^2 + \varepsilon_L |L_d|^2$$

 \Rightarrow 1/10 of prediction

Explanation for Discrepancy

M. Rekalo and E. Tomasi-Gustafsson, nucl-th/0112063

• Final $d\pi^0$ state:

 $J^{P} = 1^{-} \Rightarrow |pn\rangle = \frac{1}{\sqrt{2}}(|p\uparrow n\downarrow\rangle + |p\downarrow n\uparrow\rangle)$

• Intermediate state for $l_{nn} = l_{\pi} = 0$: Pauli principle:

 $|nn\rangle = \frac{1}{\sqrt{2}}(|n\uparrow n\downarrow\rangle - |n\downarrow n\uparrow\rangle) \Rightarrow J^P = 0^-$

• Coherent sum \Rightarrow exact cancellation \Rightarrow No rescattering AND no *s*-wave cusp!

Summary

- Existing data
 - \blacktriangleright Photo production \checkmark
 - ► NIKHEF $Q^2 = 0.05 \,\mathrm{GeV^2/c^2}$
 - ► NIKHEF $Q^2 = 0.1 \text{ GeV}^2/c^2$ (√)
 - ► MAMI $Q^2 = 0.1 \text{ GeV}^2/c^2$ (√)

New data set

- ► MAMI $Q^2 = 0.05 \, {\rm GeV^2/c^2}$
- Fifth structure function
- $\triangleright \sigma_{TT}$ interference \Rightarrow Separation of p waves
- Data sets inconsistent?
 - No discrepancy between data sets!
 - Strong Q^2 dependence unlikely?
 - ► JLab proposal E-01-014
 - ► MAMI experiment: $\Rightarrow Q^2$ dependence
- Coherent production from the deuteron
 - ► Photo production √?????
 - Elektro production 1/10 of prediction
 - ► Pauli ⇒ no rescattering
 - Neutron amplitude in impulse approximation