Polarized Structure Functions

Gerard van der Steenhoven (NIKHEF)

JLab, Newport News, 4 March 2002

9th Int. Conference on the Structure of Baryons

• The origin of spin in the baryon octet:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma_q + \Delta G + L_z$$

- Developing insight:
 - EMC (SLAC, SMC and HERMES):
 - The quark model:
 - Relativistic MIT bag model:
- Experimental questions:
 - What about flavour dependence?
- $\Delta \Sigma_q \approx 0.3 \pm 0.1$ $\Delta \Sigma_q = (\uparrow \downarrow \uparrow) = 1.0$ $\Delta \Sigma_q \simeq 0.60 0.75$
 - $\Delta u(x)$, $\Delta d(x)$, $\Delta s(x)$
 - What about gluons?
 - What about orbital angular momentum? Deeply Virtual Compton Scattering: L_z ?
 - What about other baryons?

 n, Λ^0, \dots

 $\Delta G(x)$

- What about lattice QCD?

longitudinal spin: $\Delta \Sigma_q \simeq 0.18 \pm 0.10$ transverse spin: $\delta \Sigma_q \simeq 0.56 \pm 0.09$

 $g_1^{n,p}(x), g_2^{n,p}(x)$

 $\Delta q_f(x)$

 $L_z(x)$

 Λ -spin

 $\Delta G(x)$

- Introduction
- Longitudinal spin:
 - Inclusive experiments:
 - Semi-inclusive experiments:
 - Photo-production of high p_T -pairs:
 - Deeply-virtual Compton scattering:
 - Hyperon production:
- Transverse spin:
 - Single-spin asymmetries in π -production: $h_1(x)$

- Future perspectives:
 - HERMES Run-II
 - COMPASS
 - RHIC-spin
 - SLAC
 - TESLA-N, EIC,...

• Polarized Deep Inelastic Lepton Scattering:

• Asymmetry w.r.t. to target spin orientation:

$$A_1 = \frac{1}{DP_T P_B} \frac{N_{\uparrow\downarrow} - N_{\uparrow\uparrow}}{N_{\uparrow\downarrow} + N_{\uparrow\uparrow}}$$

• The spin-dependent structure function $g_1(x)$:

$$A_1 \simeq \frac{g_1(x)}{F_1(x)} \simeq \frac{1}{F_1(x)} \sum_f e_f^2 \Delta q_f(x)$$

with the quark polarization:

$$\Delta q_f(x) = q_f^+(x) - q_f^-(x)$$

• General objective:

Spin structure of the nucleon

• The HERMES spectrometer at DESY:

• Internal Target (${}^1\overrightarrow{H}$, ${}^2\overrightarrow{H}$, ${}^3\overrightarrow{He}$, 4He , ${}^{14}N$, ${}^{20}Ne$, ${}^{84}Kr$) :

• Accumulated polarized DIS events per year:

- Data taking in 2000:
 - cell size reduced to 21 X 8.9 mm²
 - lower cell temperature: $96 \rightarrow 62 \text{ K}$

Luminosity increased by factor 2.5 !!

- End-of-Fill running:
 - Last hour of every fill: high-density targets
 - Loss of normal data taking: few %
 - Targets used: ¹H, ²H, ⁴He, ²⁰Ne
 - Positron beam life time: 0.5 2 hours
 - Data collected: 13.6 Million DIS events

Maximum luminosity: 4×10^{33} N/cm²/s

- Dedicated HERA run at E = 12 GeV:
 - HERMES spectrometer operated well
 - Collected: 1 Million DIS ev. on ¹H, ²H, ¹⁴N, ⁸⁴Kr.

• New deuterium data on $g_1^d(x)/F_1^d(x)$:

$$\frac{g_1^d}{F_1^d} = \frac{1}{1+\gamma} \left(\frac{A_{//}^d}{D} - (\eta - \gamma) A_2^d \right)$$

• Observation:

HERMES probes down to $x\approx 4\times 10^{-3}$

• Compare to existing data:

• Conclusion:

 $g_1^d(x)$: no strong Q^2 dependence

• Overview of existing $xg_1(x)$ data:

• Preliminary data from SLAC E143 and E155x:

 $[g_2(x)$ is sensitive to qg-correlations and higher twist]

• Wandzura - Wilczek interpretation:

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{g_1(y,Q^2)}{y} dy$$

 $g_2(x,Q^2)$ dominated by twist-2 part

Asymmetry for semi-inclusive hadron (h) production:

$$A_1^h(x) = \frac{\int dz \, \sum_f e_f^2 \, \Delta q_f(x) \, D_f^h(z)}{\int dz \, \sum_f e_f^2 \, q_f(x) \, D_f^h(z)} \propto \frac{N_{\uparrow\downarrow}^h - N_{\uparrow\uparrow}^h}{N_{\uparrow\downarrow}^h + N_{\uparrow\uparrow}^h}$$

• Define purity $P_f^h(x)$:

$$P_f^h(x) = \frac{e_f^2 q_f(x) \int D_f^h(z) dz}{\sum_f e_f^2 q_f(x) \int D_f^h(z) dz}$$

[probability that hadron h is produced when quark f is hit]

• Measure asymmetries on various targets:

$$\vec{A}(x) = \mathbf{P}(x) \, \vec{Q}(x)$$

with
$$\vec{A}(x) = (A_{1p}, A_{1p}^{h^+}, A_{1p}^{h^-}, A_{1d}, ...)$$

and $\vec{Q}(x) = (\Delta u(x), \Delta d(x), \Delta \bar{u}(x), ...)$

 \Rightarrow Polarized quark distributions: $\Delta u(x)$, $\Delta d(x)$, ...

• Measured semi-inclusive asymmetries $A_1^h(x)$:

• Extracted quark spin distributions:

Spin - flavour separation.

• Expected data quality with '00 data included:

HERMES Δq extraction — MC projection

pQCD Compton graph and Photon-Gluon Fusion:

• Asymmetry for high- p_T pions ($R = \sigma_{PGF} / \sigma_{Com}$) :

$$A_{LL}^{eN \to h_1 h_2} = \hat{a}_{QCDC} \frac{\Delta q}{q} \frac{1}{1+R} + \hat{a}_{PGF} \frac{\Delta G}{G} \frac{R}{1+R}$$

• Target spin-asymmetry on long. polarized ¹H:

A_{II}(p₁^{h2}, p₁^{h2} 0.0 9.0 $p_{\tau}^{h1} > 1.5 \text{ GeV/c}$ ∆**G/G=-**1 0.2 0 ∆**G/G=0** -0.2 G/G=0 -0.4 -0.6 **HERMES** Collaboration ∆**G/G=+1** GSA (<\(\]G> ~ 0.4) GSB (<\\G/G> ~ 0.3) -0.8 PRL 84 (2000) 2584 GSC (<\(\(\Delta G/G) ~ -0.1)) -1 1.6 1.8 2 p_T^{h2} (GeV/c) 0.8 1 1.2 1.4 0.6 2

- Require oppositely charged hadron pairs:
 - PGF produces only (+ -) pairs: favored
 - pQCD on ¹H \rightarrow more + hadrons: disfavored
- Preliminary results on ²H:

- Strangeness production suppressed in pQCD....
- High- p_T kaon pairs on ¹H and ²H:

More statistics needed (+ MC studies)

- Off-shell photon*-quark scattering:
 - Detect e' and γ , and require: $E_{miss} = 0$

• Ji's sumrule [Phys. Rev. Lett. 78 (1997) 610]:

 $\int x dx [H(x, \Delta^2, \xi) + E(x, \Delta^2, \xi)] = A_q(\Delta^2) + B_q(\Delta^2)$ with $\Delta^2 = -t$ and $\lim_{\Delta^2 \to 0} [A_q(\Delta^2) + B_q(\Delta^2)] = 2J_{quark} = \Sigma_q + 2L_q$

 \Rightarrow DVCS: total quark angular momentum

- Experimental considerations:
 - Interference with Bethe-Heitler process:
 DVCS ⊗ BH makes DVCS measurable
 - Detect scattered photon, but suppress π^{0} 's
 - Observe azim. asymmetry: $A_{LU}^{BetheHeitler} = 0$

First observations of DVCS

Missing mass spectrum and $A_{LU}^{\sin \phi} = \frac{2}{N} \sum_{i=1}^{N} \frac{\sin \phi_i}{(P_i)_i}$:

Azimuthal (ϕ) distributions from HERMES & JLab:

HERMES, PRL 87('01)182001 CLAS Collab., PRL 87('01)182002

• Exclusive leptoproduction of photon:

$$\frac{d^4\sigma}{d\phi dt dQ^2 dx} = \frac{xy^2}{32\left(2\pi\right)^4 Q^4} \frac{|\tau_{\rm BH} + \tau_{\rm DVCS}|^2}{\left(1 + 4x^2m^2/Q^2\right)^{1/2}}$$

• Leading order interference term:

$$(\tau_{\rm BH}^* \tau_{\rm DVCS} + \tau_{\rm DVCS}^* \tau_{\rm BH})_{pol} = \frac{4\sqrt{2} m e^6}{tQx} \cdot \frac{1}{\sqrt{1-x}} \times \frac{e_l}{\epsilon} \times \frac{P_l}{P_l} \left[-\sin\phi \cdot \sqrt{\frac{1+\epsilon}{\epsilon}} {\rm Im}\tilde{M}^{1,1}\right]$$

• Extract $\sin(\phi)$ -moment, $A_{LU}^{\sin \phi^{\pm}} = \frac{2}{N^{\pm}} \sum_{i=1}^{N^{\pm}} \frac{\sin \phi_i}{|P_l|_i}$:

- Beam-charge asymmetry with unpolarised leptons: $d\sigma(e^+p) - d\sigma(e^-p) \sim \cos \phi_{\gamma} \times \\
 \operatorname{Re} \left\{ F_1 \mathcal{H}_1 + \frac{x_B}{2 - x_B} (F_1 + F_2) \widetilde{\mathcal{H}}_1 - \frac{\Delta^2}{4M^2} F_2 \mathcal{E}_1 \right\}$
- Beam-spin asymmetry with polarised positrons: $d\sigma(\vec{e}^+p) - d\sigma(\vec{e}^+p) \sim \sin\phi_{\gamma} \times \prod \left\{ F_1 \mathcal{H}_1 + \frac{x_B}{2 - x_B} (F_1 + F_2) \widetilde{\mathcal{H}}_1 - \frac{\Delta^2}{4M^2} F_2 \mathcal{E}_1 \right\}$
- Relate DVCS amplitudes $\mathcal{H}_1, \widetilde{\mathcal{H}}_1, ...$ to GPDs:
 - $\operatorname{Im} \mathcal{H}_1 = -\pi \sum_q e_q^2 (H(\xi,\xi,\Delta^2) H(-\xi,\xi,\Delta^2))$
 - $\operatorname{Im} \widetilde{\mathcal{H}}_1 = -\pi \sum_q e_q^2 (\widetilde{H}(\xi,\xi,\Delta^2) + \widetilde{H}(-\xi,\xi,\Delta^2))$
 - $\operatorname{Re} \mathcal{H}_{1} = \sum_{q} e_{q}^{2} \left[P \int_{-1}^{+1} H(x,\xi,\Delta^{2}) \left(\frac{1}{x-\xi} + \frac{1}{x+\xi} \right) dx \right]$

$$\operatorname{Re}\widetilde{\mathcal{H}}_{1} = \sum_{q} e_{q}^{2} \left[P \int_{-1}^{+1} \widetilde{H}(x,\xi,\Delta^{2}) \left(\frac{1}{x-\xi} - \frac{1}{x+\xi} \right) dx \right]$$

• Dependence of $A_{LU}^{\sin \phi}$ on x and -t:

• Q^2 -dependence and new 2000 data for $A_{LU}^{\sin \phi}$:

No Q^2 -dependence: hard scattering regime!

Calculation by Kivel et al. [hep-ph/0012136]:

 Φ (deg)

NI

EF

- Two schemes for the Λ spin content:
 - Quark parton model: $\Delta s = 1.00$
 - SU(3) flavour symm.: $\Delta s = 0.6$, $\Delta u = \Delta d = -0.2$
- Measure the Λ polarization from $\Lambda \to p\pi^-$:

$$\frac{1}{N}\frac{dN}{d\Omega} = \frac{1}{4\pi}\left(1 + 0.64\,\vec{P}_{\Lambda}\cdot\hat{p}\right)$$

• Determine $u \to \Lambda$ spin transfer $D_{LL'}^{\Lambda}$:

$$D_{LL'}^{\Lambda} = \frac{\vec{P}_{\Lambda} \cdot \hat{L'}}{P_B D(y)} = \frac{\sum_f e_f^2 q_f^N(x) \Delta D_f^{\Lambda}(z)}{\sum_f e_f^2 q_f^N(x) D_f^{\Lambda}(z)} \approx \frac{\Delta D_u^{\Lambda}(z)}{D_u^{\Lambda}(z)}$$

• Electroproduction of Λ hyperons at HERMES:

• Negative polarisation for $x_F \left(=\frac{2p_L}{W}\right) < 0$:

• Three leading order distribution functions:

momentum carried by quarks

longitudinal quark spin, $\Delta\Sigma$

transverse quark spin, $\delta\Sigma$

- Importance of $h_1(x)$ measurements:
 - HERMES data: $\Delta\Sigma$ = 0.30 ± 0.04 ± 0.09
 - $\Delta\Sigma$ is so small because of axial anomaly:
 - * Redistribution of angular momentum in nucleon:

$$\frac{1}{2}\Delta\Sigma \approx +0.15$$
, $\Delta G \approx +1.0$, $L_z \approx -0.65$

* Redistribution is less in transverse case:

 $\Delta\Sigma$ < $\delta\Sigma$ < 1 (Quark Parton Model)

* Lattice QCD calculation (Phys. Rev. D 56 (1997) 433):

 $\Delta\Sigma$ = 0.18(10) and $\delta\Sigma$ = 0.56(9)

- The structure function $h_1(x)$ is chirally odd :
 - Not accessible in inclusive DIS
 - Use semi-inclusive DIS with chirally-odd $H_1^{\perp(1)u}(z)$
 - Assume *u*-quark dominance
 - Asymmetry for Collins process:

$$A_T^{\pi^+}(x,y,z) = P_T \cdot D_{nn} \cdot \frac{\delta u(x)}{u(x)} \cdot \frac{\mathrm{H}_1^{\perp(1)u}(z)}{\mathrm{D}_1^u(z)},$$

- $\mathrm{H}_{1}^{\perp(1)u}$ depends on $\phi_{c} = \phi_{h} + \phi_{s} - \pi$

• Evidence for transversity from HERMES ¹H data:

[HERMES, PRL 84 (2000) 4047 and PRD 64 (2001) 097101]

• z, x, p_{\perp} -dependences of $A_{UL}^{\sin\phi}$ for $\pi^{+/-}$ and K^+ :

- HERMES Run II: 2001 2006
 - Transverse spin
 Longitudinal spin
 Excl. react. w. Recoil Detector :
 Unpolarized end-of-fill runs
 2001 2003
 2003 2004
 2004 2006
 2001 2006

Simulated DVCS data with Recoil Detector (1 yr run):

• The Compass experiment at CERN:

- Successful commissioning in 2001:
 - Most detectors commissioned at 2 10⁸ μ /s.
 - Tracking: half of the channels
 - ⁶LiD target hosted in SMC magnet: $P = \pm 45\%$
 - 2 weeks smooth data taking
- Prospects for 2002:
 - Complete tracking and finish commissioning
 - First measurement of $\Delta G/G$ in 3 month run
 - Other objectives: $\delta q(x)$, $h_1(x)$, ΔD^{Λ} , spectroscopy

• RHIC at BNL as seen by LANDSAT:

• Experimental break-through at RHIC:

Colliding polarized protons at \sqrt{s} = 200 GeV

- P_{proton} = 70% at injection and 25 % at 100 GeV
- Luminosity: $1.5 \ 10^{30} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Physics: transverse spin asymmetries A_N
- Longitudinal polarization: spin rotators in 2002
 - Measure $\Delta G/G$ from jets, $c\bar{c}$, ...
 - Measure Δq_f from W^+ production
- The PHENIX experiment:

- End-station A at SLAC:
 - E160: single spin-asymm. for inelastic J/Ψ
 - E161: open charm photoproduction $\rightarrow \Delta G/G$
- What to expect in coming years?
 - Polarized quark distributions
 - Polarized gluon distribution
- The big challenges in spin physics:
 - The role of orbital angular momentum:

Analysis and interpretation of DVCS $\rightarrow J_q$?

- The role of transverse spin:

Measure the (x, Q^2) -dependence of $h_1(x)$

• The more distant future (> 2010):

- Electron-Ion Collider at BNL: $10 \otimes 250 \text{ GeV}^2$

- TESLA-N at DESY: 250 GeV e^+ on fixed target

