Proton Structure Results from the HERA Collider

R. Yoshida Argonne National Laboratory, USA

9th International Conference on Structure of Baryons

1. Proton Structure Functions and pQCD analyses

- 2. DIS cross-section at low x and low Q2
- **3. DIS diffraction and elastic VM production**
- 4. Conclusions

Structure function and parton distributions:

Deep inelastic scattering

Str. fcn. and parton dist.:

Neutral Current (γ, Z exchange) interaction

$$\frac{d\sigma_{e^{\pm}p}^{2}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} (Y_{+}F_{2} - y^{2}F_{L} \mp Y_{-}xF_{3})$$

 $y = Q^2/xs$, the inelasticity parameter, $Y_{\pm} = (1 \pm (1 - y)^2)$

 F_2, F_L , and xF_3 are structure functions of the proton.

- F_L : longitudinal component, damped by y^2 .
- xF_3 : Small at $Q^2 \ll M_Z^2$,

And (LO (or in DIS scheme..))

 $F_2(x,Q^2) = x \sum_q e_q^2(q(x,Q^2) + \overline{q}(x,Q^2))$ where q, \overline{q} are quark, antiquark densities in the proton. New HERA (H1 and ZEUS) measurements have ca. 3% precision.

Str. fcn. and parton dist.:

R. Yoshida, ANL, Mar. 4, 2002

R. Yoshida, ANL, Mar. 4, 2002

Str. fcn. and parton dist.:

To LO: $\frac{\partial F_2}{\partial \ln Q^2} \sim \alpha_s xg$

NLO DGLAP fit with q/g paramerized

$$xq(x) = ax^b(1-x)^c[1+d\sqrt{x}+ex]$$

Str. fcn. and parton dist.:

R. Yoshida, ANL, Mar. 4, 2002

$$\gamma^*$$
 Proton

Note: Small- $x \Rightarrow \log Q^2$ (Well below 1 GeV² at lowest x)

DIS IN THE HADRONIC PICTURE

And at small-x:

$$\sigma_{tot}^{\gamma^* p}(W^2, Q^2) \approx \frac{4\pi^2 \alpha}{Q^2} F_2(x \approx Q^2/W^2, Q^2)$$

• F_2 vanishes like Q^2 at low Q^2 (conservation of EM current):

•
$$\sigma_{tot}^{\gamma p}(W^2)$$
 described by Regge $[\sim W^{2(\alpha_{\rm I\!P}-1)}]$
($\alpha_{\rm I\!P} \approx$ 1.08, the "soft Pomeron") i.e. $W^{0.16}$

$$F_{2} \text{ at } Q^{2} < 1 \text{ GeV} \\ 10^{-3} > x > 10^{-6} \\ \text{Recall } y = W^{2}/s \\ F_{2} \text{ vanishes like } Q^{2} \\ \text{at fixed } W. \\ \text{Regge fit:} \\ F_{2}(x,Q^{2}) = \left(\frac{Q^{2}}{4\pi^{2}\alpha}\right) \cdot \left(\frac{M_{0}^{2}}{M_{0}^{2}+Q^{2}}\right) \cdot \\ \left(A_{\mathrm{IR}} \cdot (W^{2})^{\alpha_{\mathrm{IR}}-1} + A_{\mathrm{IP}} \cdot (W^{2})^{\alpha_{\mathrm{IP}}-1}\right) \\ \alpha_{\mathrm{IP}} \approx 1.1 \text{ and } M_{0} \approx 0.7 \text{ GeV.} \\ \text{Reystide, ANL, Mar. 4, 202} \\ \\ \hline \\ Reystide, ANL, Mar. 4, 202 \\ \hline \\ Reystide, ANL, Reystide, ANL, Reysti$$

What is happening at low x and medium Q^2 ? note: offset constant is $\log x$ i.e. no distortion

Lines are fits $A(x) + B(x) log Q^2 + C(x) (log Q^2)^2$

In the low Q^2 region: $F_2 \sim Q^2 \sigma_0,$ i.e. vanishing like $Q^2.$ Therefore:

 $dF_2/dlog(Q^2) \sim Q^2 \sigma_0$

 $\Rightarrow x$ is not an important variable. Q^2 is the important variable in the left hand side of the plots.

Naively, in the region where GLAP applicable (Q^2 large):

 $dF_2/dlog(Q^2) \sim xg \sim x^{-\lambda}$

IF λ is a slow function of x and Q^2 . $\Rightarrow Q^2$ is not an important scale. x is the important variable in the right hand side of the plots.

Beyond DGLAP: pert. QCD considerations

- GLAP fits ($\ln Q^2$ resummation of QCD) can describe data well above $Q^2 > 1~{\rm GeV}^2$
- Regge fits can describe data well $Q^2 < 1 \, {\rm GeV}^2$

- What about $\ln 1/x$ (BFKL,CCFM), higher twist, terms etc.?
- What about shadowing or saturation (GLR): i.e. effects from high density of partons at low-x?

DIPOLE models: a class of phenomenological models

• Proton dissociates to a $q\bar{q}$ pair (dipole) upstream of the protons

example: Golec-Biernat &Wuesthoff

- $\hat{\sigma}_{dipole}$ increases as r^2 at small r. \Rightarrow Color transparency.
- $\hat{\sigma}_{dipole}$ becomes constant (saturates) at large r.

 $\sigma = \int d^2r \int dz |\Psi(z,r)|^2 \hat{\sigma}_{dipole}(x,r)$

GB&W Description of $\sigma_{tot}^{\gamma^+ p}$

DIS diffraction at HERA:

At HERA diffractive dissociation of virtual photons is observed ($\approx 10\%$): can we understand this in terms of pQCD?

Define 3 more variables:

- $x_{\mathbf{P}}$: momentum fraction taken by the pomeron.
- eta: momentum fraction of the struck parton in the

pomeron.

- t: momentum transfer at the proton vertex.
- Beyond the simple GLAP picture : Need to interact with 2 gluons, at least!
- What is the relationship of diffraction with F_2 at small-x?

The diffractive cross section is written as:

The flux factor must be telling us about gluon correlation in the proton!

$$\frac{d^3 \sigma^D}{d\beta dQ^2 dx_{\rm IP}} = \frac{4\pi \alpha^2}{\beta Q^2} (1 - y + \frac{y^2}{2}) F_2^{D(3)}(\beta, Q^2, x_{\rm IP})$$

(integrated over t)

Hard factorization has been proven (Collins 1997):

 $F_2^D \sim f^D \otimes \hat{\sigma}$

Where f^D is the diffractive parton densities. If Regge factorization is assumed: $F_2^D(x_{\rm I\!P}, t, Q^2, \beta) = f(x_{\rm I\!P}, t) \cdot F_2^{\rm I\!P}(\beta, Q^2)$

 \Rightarrow Can do a GLAP analysis of $F_2^{\rm I\!P}$, the universal (for DIS) Pomeron structure function. (More from Max.)

 $f(x_{\mathbb{I\!P}},t) pprox 1/x_{\mathbb{I\!P}}$, the Pomeron flux factor.

z ^(jets)

However....

- \Rightarrow The origin of the Pomeron flux unexplained.
- \Rightarrow What is the relationship of σ_{diff} to σ_{tot} ?

- Diffraction has the same W^2 (or x) dependence as the total cross section! ($\sigma_{diff} \sim W^{0.4}$, $q^2 \sim 10 \text{ GeV}^2$)
- Contradicts naive optical theorem expectation $\Rightarrow \sigma^{tot}_{\gamma^*p} \sim W^a \text{ then } \sigma^{diff} \sim W^{2a}$
- Contradicts expectation–if $\sigma_{\gamma^* p}^{tot} \sim$ Gluon, then $\sigma^{diff} \sim$ Gluon² ??
- \Rightarrow Also contradicts expectation of Regge: $\alpha_{\rm I\!P} = 1.08$ (i.e. $\sim W^{0.16}$)

The lines in the figure are from the saturation model of Golec-Biernat and Wüsthoff

 $\sigma_{diff}\sim \int d^2r\int dz |\Psi_{\gamma}|^2 \hat{\sigma}_{dipole}{}^2$

The dipole model qualitatively desribe the data: i.e. give the right behavior for the "pomeron structure"

Simple physical picture : effective correlation of partons due to interplay of photon size and parton separation.

Elastic Vector Meson Production at HERA:

- Very similar process to the inclusive diffraction
- What is the *W* dependence? Recall:

$$\begin{split} & \sigma_{\gamma p}^{tot} \sim W^{2(\alpha_{\rm I\!P}-1)} \approx W^{2(0.08)} = W^{0.16} \\ & F_2^p \; ({\rm or} \; \sigma_{\gamma^* p}) \; ({\rm at} \; Q^2 \approx 10 \; {\rm GeV}^2) \sim x^{-0.2} \\ & \Rightarrow W^{2(0.2)} = W^{0.4} \\ & \sigma^{diff} / \sigma_{\gamma^* p} \; {\rm constant.} \end{split}$$

• What about Vector Meson production \Rightarrow

J/ ψ rises like $W^{0.8}$! (i.e. twice F_2 at 10 GeV²)

$\sigma \propto W^\delta$

Still large errors: slope (δ) consistent with being constant as function of Q^2 .

What about the Q^2 dependence of ho's? \Rightarrow

Now compare to F2 (i.e. inclusive DIS)

$$x^{-\lambda}
ightarrow W^{2\lambda}$$

Naively: $\sigma_{VM} \sim f_V^2 \cdot \hat{\sigma}$? i.e. coupling times the (dipole?) cross section $\hat{\sigma}$?

 M_V^2

V

q

q

p(p')

 f_V^2 from charges of the quarks: ho: ω : ϕ : J/ψ ightarrow 9:1:2:8.

• p(p) =

 Q^2

γ^{*}(q) ΛΛ

... and $\hat{\sigma}$ that depends on the dipole radius?

Look at the t slope: $rac{d\sigma_{VM}}{d|t|} \propto e^{-b|t|}$

Elastic VM Production at HERA

Consistent with $Q^2 + M_{VM}^2$ giving the "size" of the interaction.

?

Dipole formulation of the VM cross section \Rightarrow

10² W (GeV)

10

 10^{2}

Elastic production of J/ψ

10² W (GeV)

10

 $Q^2 = 0$

Conclusions and outlook:

Only a part of HERA results on proton structure was presented here.

The measurements of proton structure function F2 at of 3% accuracy over 6 orders magnitude.

-leads to precise determinations of QCD parameters: parton distributions, strong coupling constant.

Looking more closely at small x:

Connection has to exist between small-x and diffraction.

-A simple dipole model can qualitatively demonstrate the connection between DIS, diffraction, and VM production.

-May point the way to bridge the gap, in understanding, between DGLAP, and, low-x and low-Q2 regions.

HERA detectors, will begin to take data again after the luminosity upgrade of the accelerator: -Will concentrated on high-Q2, high-x, physics.

Meanwhile..a large amount of HERA data on low-x and diffraction is available.

