

Some R&D Toward Brighter X-ray FELs

Zhirong Huang (SLAC)

March 6, 2012

FLS2012 Workshop, Jefferson Lab

Outline

Introduction

Seeding for temporal coherence

- Hard x-rays
- Soft x-rays
- Push for higher power
 - High peak power
 - High average power
- Control of x-ray properties
 - Temporal shape
 - Polarization

Summary

Where are we now (hard x-rays)

- SASE wavelength range: 25 1.2 Å
- Photon energy range: 0.5 10 keV
- Pulse length (5 100 fs FWHM)
- Pulse energy up to 4 mJ
- ~95% accelerator availability
- SASE Wavelength range: 3 0.6 Å
- Photon energy range: 4 20 keV
- Pulse length (**10** fs FWHM)
- Pulse energy up to **1** mJ

more XFELs to come... ³

Where are we now (soft x-rays)

FLASH 2011

SASE wavelength range Average single pulse energy Pulse duration (FWHM) Peak power (from av.) Average power (example for 3000 pulses/sec) Spectral width (FWHM) Average Brilliance Peak Brilliance 4.1 - 45 nm $10 - 400 \text{ }\mu\text{J}$ 50 - 200 fs 1 - 3 GW $\sim 300 \text{ mW}$ $\sim 0.7 - 2 \%$ $10^{17} - 10^{21} \text{ *}$ $10^{29} - 10^{31} \text{ *}$

X-ray FEL Parameters – Now and Future

(C. Pellegrini et al)

Parameter	Now	Future
Photon energy, keV	Up to 20	Up to 100
Pulse repetition rate, Hz	≤ 120	10 ² - 10 ⁶
Pulse duration, fs	~2-300	<1-1000
Coherence, transverse	diffraction limited	diffraction limited
Coherence, longitudinal	not transform limited	transform limited
Coherent photons/pulse	$2x10^{12}-3x10^{13}$	10 ⁹ - 10 ¹⁴
Peak brightness, ph/s mm ² mrad ² 0.1% bandwidth	10 ³³	10 ³⁰ - 10³⁴
Average Brightness, ph/s mm ² mrad ² 0.1% bandwidth	$4x10^{22}$	10 ¹⁸ - 10²⁷
Polarization	linear	variable, linear to circular

red: parameter space to be developed

Outline

Introduction

Seeding for temporal coherence

- Hard x-rays
- Soft x-rays
- Push for higher power
 - High peak power
 - High average power
- Control of x-ray properties
 - Temporal structure
 - Polarization

Summary

Self-Seeding

Originally proposed at DESY (J. Feldhaus et al, NIMA, 1997)

- First undulator generates SASE
- X-ray monochromator filters SASE and generates seed
- Second undulator amplifies seed to saturation

Chicane delays electrons and washes out SASE microbunching

Long x-ray path delay (~10 ps) requires large chicane that take space and may degrade beam quality

Hard x-ray self-seeding

HXRSS at LCLS (replacing U16)

P. Emma (SLAC/LBL) A. Zholents (ANL) **Diamond mono chamber** 9

Self-Seeding works! SLAC Argonnel Structure

Single shot SASE and Seeded FEL spectra

Single shot pulse energy from the gas detectors

https://sites.google.com/a/lbl.gov/realizing-the-potential-of-seeded-fels-in-the-softx-ray-regime-workshop/agenda/home

Realizing the Potential of Seeded FELs in the Soft X-Ray Regime

Soft X-Ray Self-Seeding

LCLS is developing a compact grating monochromator and chicane that is similar to HXRSS unit in size

Fit within the length of one undulator module 4 m.

- Photon energy range 400 1000 eV.
- X-ray and electron delay varies from 660 850 fs.
- Resolving power from 7800 (400 eV) to 4800 (1000 eV).

P. Heimann's talk at FEL working group

Echo-Enabled Harmonic Generation

G. Stupakov, PRL 2009

- Very high harmonic bunching may be produced from external laser
- Demonstration experiments at SLAC and SINAP look promising
- High harmonic bunching may seed a soft x-ray FELs (a few nm wavelength)

Echo-7 at NLCTA

(intensity at 227 nm)

• Future Plans (Echo-75): Demonstrate technology for direct laser seeding at 3nm (from 200 nm)

T. Raubenheimer, D. Xiang, et al.,

Another seeding route: short-wavelength HHG

Proposed R&D System: Cryo Pumped, Near-IR OPCPA, HHG, HGHG

A. Fry, LBL seeding workshop

Outline

Introduction

Seeding for temporal coherence

- Hard x-rays
- Soft x-rays
- Push for higher power
 - High peak power
 - High average power
- Control of x-ray properties
 - Temporal structure
 - Polarization

Summary

Taper to enhance FEL efficiency

- FEL saturates due to significant E-loss
- Tapered undulator keeps FEL resonance and increase power

Self-seeding + Tapered undulator → TW FEL

W. Fawley, J. Frisch, Z. Huang, Y. Jiao, H.-D. Nuhn, C. Pellegrini, S. Reiche, J. Wu (FEL2011)

Similar approach to enhance LCLS power

Enhanced taper + adding 5-7 existing LCLS undulators (20-30 m) can boost the LCLS power by a factor of 10

High-average power XFEL

High average power electron beam distributed to an array of FELs from high reprate injector and CW SCRF linac (e.g., NGLS, J. Corlett's talk)

LBL APEX gun

Reaching High-average x-ray power

- For a 1-2 GeV linac, FEL saturation power at ~1 GW level, or 100 uJ pulse energy for a 100-fs x-ray pulse
- High-rep. rate (1 MHz) operation yields 100 W average x-ray power

Outline

Introduction

Seeding for temporal coherence

- Hard x-rays
- Soft x-rays
- Push for higher power
 - High peak power
 - High average power
- Control of x-ray properties
 - Temporal structure
 - Polarization

Smaller charge, shorter x-rays

NATIONAL ACCELERATOR LABORATORY

Ultra-low charge for attosecond pulses

C. Pellegrini, S. Reiche, J. Rosenzweig, FLS2010

Cross-correlation with *e*⁻ and x-ray pulses

Cross-correlation technique suggested By Geloni, Kachayan, Saldin

Y. Ding, P. Emma

Two-color, two attosecond pulse generation

A. Zholents, G. Penn, "Obtaining two attosecond pulses for X-ray stimulated Raman spectroscopy", NIM–A, 612, 2, (January 2010)

Polarization control

Key technology is undulator with switchable polarization
Cost and tolerance for long FEL undulator line lead to considerations of polarization afterburner

Planar + Helical Stable >90% polarization Slow switching - Planar (x) - Pol. Und.

Planar + Crossed Planar

- ~80% polarization
- May have fluctuations
- Fast switching

with pulsed phase shifter

DELTA undulator

- Delta undulator is a novel, compact design that fits to existing LCLS girder
- LCLS plans to build and test a 3.2-m Delta @ U33 in two years
- Degree of circular polarization for 1 DELTA ~70% at soft x-rays.
- Adding 1 or 2 more DELTA in future provides >90% polarization

Cornell Delta undulator (A. Temnykh)

ONAL ACCELERATOR LABORA

H.-D. Nuhn, E. Kraft

Summary

- XFELs represent a revolution in light source development.
- Seeding will bring radial improvements to such revolutionary machines.
- Tapered undulator after a seeded FEL has the potential of generating very high FEL power.
- Techniques to control x-ray pulse shapes and polarization states should be fully developed.

