FLS 2012: Deterministic Approaches

Johan Bengtsson

Mar 5, 2012

Outline

- 1. What's Known.
- 2. SR LS "Thermodynamics" (physics limitations).
- 3. An IBS Limited (deterministic) Approach: THE => no "Chromaticity Wall".
- 4. Chromatic Control: (deterministic approach).
- 5. Pseudo-Knobs: A Leading Order (reductionist) Approach.
- 6. Signal Processing 101.
- 7. "Closing-the-Loop": In the Control Room (deterministic approach).
- 8. Model Based Control by Thin Clients (deterministic approach).

Challenge:

When a (brute force) numerical approach doesn't "cut it", how to "fix it"?

What's Known

[1] K.W. Robinson "Radiation Effect in Circular Electron Accelerators" <u>Phys. Rev. 111 (1958)</u>.
 [2] M. Sommer "Optimization of the Emittance of Electrons (Positrons) Storage Rings" <u>LAL/RT/83-15</u> (1983).

[3] L. Teng "Minimum Emittance Lattice for Synchrotron Radiation Storage Rings" FNAL/TM-1269 (1984), ANL LS-17 (1985).

[4] Y. Baconnier et al "Emittance Control of the PS e[±] Beams Using a Robinson Wiggler" <u>NIM A235 (1985)</u>.

[5] H. Wiedemann "Future Development of Synchrotron Radiation Sources at Stanford" PAC87.

[6] G. Brown et al "Operation of PEP in a Low Emittance Mode" PAC87.

[7] R.P. Walker et al "General Design Principles for Compact Low Emittance Synchrotron Radiation Sources" <u>PAC87</u>.

[8] H. Wiedemann "An Ultra-Low Emittance Mode for PEP Using Damping Wiggler" <u>NIM A266 (1988)</u>.
 [9] M.G. Minty et al "Emittance Reduction via Dynamic RF Frequency Shift at the SLC Damping Rings" <u>SLAC-PUB-7954 (1988)</u>.

[10] G. Wüstefeld et al "The Analytical Lattice Approach for the Ring Design BESSY II" <u>EPAC1988</u>. [11] V. Litvinenko "Storage Ring-Based Light Sources" <u>FLS1999</u>.

[12] M. Böge et al "Commissioning of the SLS Using CORBA Based Beam Dynamics Applications" <u>PAC01</u>.

[13] P. Emma, T. Raubenheimer "Systematic Approach to Storage Ring Design" PRST-AB 4 (2001).

[14] J. Guo, T. Raubenheimer "Low Emittance e⁻/e⁺ Storage Ring Design Using Bending Magnets with Longitudinal Gradient" <u>EPAC02</u>.

[15] R. Nagaoka, A. Wrülich "Emittance Minimization with Longitudinal Dipole Field Variation" <u>NIM 575A</u> (2007).

SR LS "Thermodynamics"

• The horizontal emittance is given by (isomagnetic lattice)

$$\varepsilon_{\mathbf{x}} = \tau_{\mathbf{x}} \langle \mathcal{H}_{\mathbf{x}} \cdot \mathbf{D}_{\delta} \rangle, \qquad \sigma_{\delta}^2 = \tau_{\mathbf{E}} \langle \mathcal{H}_{\mathbf{x}} \cdot \mathbf{D}_{\delta} \rangle,$$
$$\varepsilon_{\mathbf{x}} [\mathbf{nm} \cdot \mathbf{rad}] = \mathbf{7.84} \times 10^3 \cdot \frac{(\mathbf{E} [\text{GeV}])^2 \mathbf{F}}{J_{\mathbf{x}} N_{b}^3}$$

 $N_{\rm b}$ is the no of dipoles, $J_{\chi} + J_{z} = 3$, $F \ge 1$. No dipole gradients => $J_{\chi} \approx 1$.

• With damping wigglers, the natural horizontal emittance ϵ_x scales with the radiated power

$$\frac{\varepsilon_{xw}}{\varepsilon_{0x}} \approx \frac{U_0}{U_0 + U_w}, \qquad \frac{\sigma_{\delta_w}}{\sigma_{\delta_0}} = \sqrt{\frac{1 + \frac{8}{3\pi} \frac{B_w}{B_0} \frac{U_w}{U_0}}{1 + \frac{U_w}{U_0}}}$$

i.e., on behalf of σ_{δ} . High end Insertion Devices requires $\sigma_{\delta} \le 1 \times 10^{-3}$.

Intrabeam Scattering (IBS)

Equilibrium

$$\begin{split} \boldsymbol{\epsilon}_{\boldsymbol{\chi}} &= \boldsymbol{\epsilon}_{\boldsymbol{\chi}}^{\boldsymbol{SR}} + \boldsymbol{\epsilon}_{\boldsymbol{\chi}}^{\boldsymbol{IBS}} = \tau_{\boldsymbol{\chi}}(\boldsymbol{\mathcal{E}}^{\boldsymbol{SR}}) \langle \boldsymbol{\mathcal{H}}_{\boldsymbol{\chi}} \cdot (\boldsymbol{\mathcal{D}}_{\delta}^{\boldsymbol{SR}}(\boldsymbol{\rho}) + \boldsymbol{\mathcal{D}}_{\delta}^{\boldsymbol{IBS}}) \rangle, \\ \boldsymbol{\sigma}_{\delta}^{2} &= \tau_{\delta}(\boldsymbol{\mathcal{E}}^{\boldsymbol{SR}}) (\boldsymbol{\mathcal{D}}_{\delta}^{\boldsymbol{SR}}(\boldsymbol{\rho}) + \boldsymbol{\mathcal{D}}_{\delta}^{\boldsymbol{IBS}}) \end{split}$$

where

$$\delta \equiv \frac{\boldsymbol{\mathcal{E}} - \boldsymbol{\mathcal{E}}_0}{\boldsymbol{\mathcal{E}}_0}, \qquad \mathcal{H}_{\boldsymbol{\mathcal{X}}} \equiv \tilde{\boldsymbol{\eta}}^{\mathrm{T}} \tilde{\boldsymbol{\eta}}, \qquad \bar{\boldsymbol{\eta}} \equiv \begin{bmatrix} \boldsymbol{\eta}_{\boldsymbol{\mathcal{X}}} \\ \boldsymbol{\eta'}_{\boldsymbol{\mathcal{X}}} \end{bmatrix}, \qquad \tilde{\boldsymbol{\eta}} \equiv \boldsymbol{\mathcal{A}}^{-1} \bar{\boldsymbol{\eta}}, \qquad \boldsymbol{\mathcal{A}}^{-1} = \begin{bmatrix} 1/\sqrt{\beta_{\boldsymbol{\mathcal{X}}}} & \boldsymbol{0} \\ \alpha_{\boldsymbol{\mathcal{X}}}/\sqrt{\beta_{\boldsymbol{\mathcal{X}}}} & \sqrt{\beta_{\boldsymbol{\mathcal{X}}}} \end{bmatrix}.$$

Touschek Life Time Trade-Offs (NSLS-II CDR, 2006)

An IBS Limited (deterministic) Approach

- **1. Hor. emittance (natural):** damping \leftrightarrow diffusion.
- 2. Optimize (globally, for Insertion Devices):

• PETRA-3, NSLS-II, and MAX-IV avoid the "chromaticity wall" with damping wigglers and a 7-BA. A TME (reductionist) artifact; by ignoring (linear) chromaticity.

NSLS-II CDR (2006): Parametric Evaluation

Table 4.2.3 Storage Ring Parameters for Number of DBA Lattice Cells Varying from 32 to 24.

Lattice	DBA32	DBA30	DBA28	DBA26	DBA24
Circumference [m]	822	780	739	697	656
Bend magnet radius [m]	25	25	25	25	25
Straight sections [n x (m)]	16x(8, 5)	15x(8, 5)	14x(8, 5)	13x(8, 5)	12x(8, 5)
Horizontal emittance, ε _x (bare) [nm-rad]	1.7	2.1	2.6	3.2	4.1
Horizontal emittance, ɛx (full set of damping wigglers) [nm-rad]	0.5	0.6	0.7	0.8	1.1
Straight Section Utilization					
8 m straights					
RF and injection	3	3	3	3	3
Damping wigglers	8	8	8	8	8
Undulators	5	4	3	2	1
5 m straights					
Undulators	16	15	14	13	12

• $\epsilon_x^{\text{IBS}} = 0.2 - 0.25 \text{ nm} \cdot \text{rad}$.

• C: ~\$1 M/m.

Implementations

 N³_b: DBA, TBA -> 7BA. Reduced peak dispersion => a stiffer (nonlinear) system (of ODEs) for chromatic control.

<u>MAX-IV</u> (7BA-20 => relaxed optics, by innovative engineering $\varepsilon_x = 0.26$).

PEP-X "baseline" (TME $\varepsilon_x = 0.16$) -> "<u>ultimate</u>" (2.8×MAX-IV 1/2.8³ $\rightarrow \varepsilon_x = 0.012$). USR7 (10BA-40 in the Tevatron tunnel $\varepsilon_x = 0.003$, @11 GeV).

- $J_x \leftrightarrow J_z \Rightarrow \epsilon_x \leftrightarrow \sigma_\delta$: gradient dipoles (incl. *s*-dependent), Robinson wigglers, orbit (i.e., "dipoles") in the quadrupoles. Insertion Devices => $\sigma_\delta \le 1 \times 10^{-3}$.
- F: chromatic straights (effective hor. emittance). Symmetric lattice => dispersion at the RF cavity.
- $\varepsilon_{x} \leftrightarrow \sigma_{\delta}$: damping wigglers. Requires achromatic straights => F = 3). But also provide "free" beamlines. Insertion Devices => $\sigma_{\delta} \le 1 \times 10^{-3}$.
- Nota Bene: While facilities based on DBAs, after converting to chromatic straights, to my knowledge, have only reported the *relative* improvement.

Chromatic Control: First Principles

Challenge: How to control the swamp of undesirable terms generated by (linear) chromatic correction for a strongly focusing lattice?

$$M = A^{-1} e^{D_V + \dots} e^{D_K} A$$

Zero the undesirable terms in *V*; a highly over constrained problem. The most effective approach: use symmetry (reduces *all* terms). For example, linear achromats (in the phase-space variables): DBA, TBA, 7BA, etc.

Traditional design strategies:

- 1. Avoidance (weakly focusing rings with high periodicity): Introduce two chromatic families and choose the working point so that systematic resonances are avoided.
- 2. Anti-symmetry (FODO lattices): Introduce two chromatic families separated by horizontal- and vertical phase advance of $k\pi$, k = odd. However, this will drive h_{20001} and h_{00201} systematically.
- 3. Higher order achromats (strongly focusing lattices): define a unit cell, repeat it *N* times, and choose the phase advance so that all the 1st and 2nd order driving terms are cancelled. However, the working point is now on an integer.

Example: 5-Cell Second Order Achromat

- **1. Introduce two chromatic sextupole families.**
- 2. The first order driving terms are cancelled by e.g.:

Cell	ν _{x, y}	v _x	$2v_{\mathbf{x}}$	$2v_y$	3v _x	$v_{x} - 2v_{y}$	$v_x + 2v_y$
1	(8/5, 3/5)=(1.60, 0.60)	1.60	3.20	1.20	4.80	0.40	2.80
2		3.20	6.40	2.40	9.60	0.80	5.60
3		4.80	9.60	3.60	14.40	1.20	8.40
4		6.40	12.80	4.80	19.20	1.60	11.20
5		8.00	16.00	6.00	24.00	2.00	14.00

- 3. Introduce 1 more chromatic and 5 geometric (i.e., a total of 9 families => full control of all the first order driving terms); to provide leeway for the choice of working point (SLS <u>Tech Note 9/97</u>).
- The required number of sextupole (-> multipole) families, placement, etc. can be evaluated & optimized by analyzing the rank conditions for the Jacobian of the driving terms (J. Bengtsson et al <u>NIM 404, 1998</u>).

First Order Chromatic Effects Cancelled Over 5 Cells

*h*₂₀₀₀₁

*h*₁₀₀₀₂

First Order Geometric Effects Cancelled over 5 Cells

NSLS-II: Higher Order Achromats

				First Order				Second Order			Third Order							
					Geo	metric		Chron	natic	ic Geometric				Geometric				
Cell	ν _x	ν _y		ν _x	3v _x	$v_x - 2v_y$	$v_x + 2v_y$	$2v_x$	$2v_y$	$4v_x$	$4v_y$	$2v_x - 2v_y$	$2v_x+2v_y$	5 _V _x	v_x -4 v_y	$v_x + 4v_y$	$3v_x - 2v_y$	$3v_x+2v_y$
1	1.500	0.625	6/4, 5/8	1.50	4.50	0.25	2.75	3.00	1.25	6.00	2.50	1.75	4.25	7.50	-1.00	4.00	3.25	5.75
2	3.000	1.250		3.00	9.00	0.50	5.50	6.00	2.50	12.00	5.00	3.50	8.50	15.00	-2.00	8.00	6.50	11.50
3	4.500	1.875		4.50	13.50	0.75	8.25	9.00	3.75	18.00	7.50	5.25	12.75	22.50	-3.00	12.00	9.75	17.25
4	6.000	2.500		6.00	18.00	1.00	11.00	12.00	5.00	24.00	10.00	7.00	17.00	30.00	-4.00	16.00	13.00	23.00
1	1.400	0.600	7/5, 6/10	1.40	4.20	0.20	2.60	2.80	1.20	5.60	2.40	1.60	4.00	7.00	-1.00	3.80	3.00	5.40
2	2.800	1.200		2.80	8.40	0.40	5.20	5.60	2.40	11.20	4.80	3.20	8.00	14.00	-2.00	7.60	6.00	10.80
3	4.200	1.800		4.20	12.60	0.60	7.80	8.40	3.60	16.80	7.20	4.80	12.00	21.00	-3.00	11.40	9.00	16.20
4	5.600	2.400		5.60	16.80	0.80	10.40	11.20	4.80	22.40	9.60	6.40	16.00	28.00	-4.00	15.20	12.00	21.60
5	7.000	3.000		7.00	21.00	1.00	13.00	14.00	6.00	28.00	12.00	8.00	20.00	35.00	-5.00	19.00	15.00	27.00
1	1.500	0.583	9/6, 7/12	1.50	4.50	0.33	2.67	3.00	1.17	6.00	2.33	1.83	4.17	7.50	-0.83	3.83	3.33	5.67
2	3.000	1.167		3.00	9.00	0.67	5.33	6.00	2.33	12.00	4.67	3.67	8.33	15.00	-1.67	7.67	6.67	11.33
3	4.500	1.750		4.50	13.50	1.00	8.00	9.00	3.50	18.00	7.00	5.50	12.50	22.50	-2.50	11.50	10.00	17.00
4	6.000	2.333		6.00	18.00	1.33	10.67	12.00	4.67	24.00	9.33	7.33	16.67	30.00	-3.33	15.33	13.33	22.67
5	7.500	2.917		7.50	22.50	1.67	13.33	15.00	5.83	30.00	11.67	9.17	20.83	37.50	-4.17	19.17	16.67	28.33
6	9.000	3.500		9.00	27.00	2.00	16.00	18.00	7.00	36.00	14.00	11.00	25.00	45.00	-5.00	23.00	20.00	34.00

Pseudo-Knobs: Leading Order (reductionist) Approach

- As an attempt to introduce more knobs, one may (artificially) reduce the symmetry of a multipole family. However, while a free parameter is obtained to control the leading order terms, the approach will (systematically) drive the next order(s).
- So, for a systematic approach (of any scheme), effects (at least) one order beyond the "knobs" must be included in the analysis.

The impact on NSLS-II is summarized in Tech Note 90, 2009:

Order	Hor/Ver	Contr. for $\delta = 2.5\%$	Contr. for $\delta = 3.0\%$
0	(33.45, 16.37)	(33.45, 16.37)	(33.45, 16.37)
1	(-0.017, -0.037)	(-0.0004, -0.001)	(-0.001, -0.001)
2	(-65.9, 10.1)	(-0.041, 0.006)	(-0.059, 0.009)
3	(-3.3×10 ² , 2.1×10 ²)	(-0.005, 0.003)	(-0.009, 0.006)
4	$(2.8 \times 10^4, -2.7 \times 10^3)$	(0.011, -0.001)	(0.023, -0.002)
5	(-9.1×10 ⁵ , -6.1×10 ⁴)	(-0.009, -0.001)	(-0.022, -0.001)

TABLE 2. Residual Chromaticity for the Oct, 2008 Baseline (working point #4, 3+6 sextupole families, $\xi_{x,y} = (0, 0)$).

Order	Hor/Ver	Contr. for $\delta = 2.5\%$	Contr. for $\delta = 3.0\%$
0	(33.42, 16.35)	(33.42, 16.35)	(33.42, 16.35)
1	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)
2	(-50.8, 15.4)	(-0.032, 0.010)	(-0.045, 0.014)
3	(-2.0×10 ³ , 2.0×10 ²)	(-0.032, 0.003)	(-0.055, 0.005)
4	$(6.2 \times 10^4, -1.6 \times 10^3)$	(0.024, 0.001)	(0.050, 0.001)
5	(-1.2×10 ⁶ , -1.1×10 ⁵)	(-0.012, -0.001)	(-0.030, -0.003)

TABLE 3. Residual Chromaticity for Translated Chromatic Sextupole Pair $(3+14 \text{ sextupole families}, \xi_{x,y} = (0, 0)).$

"Closing-the-Loop"

Strategies (an iterative process):

- Design ("feed-forward"): model, guidelines, engineering, reality checks, etc.
- In the control room ("feed-back", e.g. commissioning): Model Based Control, Orbit Response Matrix, Turn-by-Turn BPM data, etc.

Beam Transfer Function & Model Based Control

$$\bar{\mathbf{x}}(t) \longrightarrow \bar{\mathbf{h}}(t) \longrightarrow \bar{\mathbf{y}}(t)$$

RHIC, 2006 (AC dipole)

LEAR, 1988 (pinger)

U.S. DEPARTMENT OF

SSC, 1990 (tracking)

SLS, 2007- (pinger)

Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is defined by

$$x_k = \sum_{n=0}^{N-1} X_n e^{i2\pi kn/N}, \qquad k = 0, 1, ..., N-1$$

where

$$X_n = \frac{1}{N} \sum_{k=0}^{N-1} x_k e^{-i2\pi k n/N}, \qquad n = 0, 1, ..., N-1$$

Typical window functions

 $i2\pi k_{\rm V}$

Rectangular:

$$e^{i2\pi kv_0} \operatorname{rect}\left(\frac{k}{N}\right) \to \operatorname{sinc}(\pi(n-Nv_0)),$$

$$e^{i2\pi kv_0} \sin\left(\pi\frac{k}{N}\right) \to \frac{1}{2\pi} \frac{\sin(\pi(n-Nv_0-1/2))}{(n-Nv_0)^2 - (1/2)^2},$$

$$i2\pi kv_0 = 2(-k) = -1 = -1$$

Hann:

Sine:

$$\mathbf{e}^{i2\pi \mathbf{k}\mathbf{v}_{0}} \sin^{2}\left(\pi \frac{\mathbf{k}}{\mathbf{N}}\right) \rightarrow -\frac{1}{2} \frac{1}{(\mathbf{n} - \mathbf{N}\mathbf{v}_{0})^{2} - 1} \operatorname{sinc}(\pi(\mathbf{n} - \mathbf{N}\mathbf{v}_{0}))$$

Numerical Analysis of Fundamental Frequency

It has become fashionable to use (Laskar, 1993, NAFF)

$$\operatorname{Max}\{|\boldsymbol{X}(\boldsymbol{v})|\} = \operatorname{Max}\left\{\left|\sum_{k=0}^{N-1} \boldsymbol{w}_{k}\boldsymbol{x}_{k}\boldsymbol{e}^{-i2\pi k\boldsymbol{v}}\right|\right\}$$

i.e., to solve numerically for a Hann window

$$w_k = \sin^2\left(\frac{\pi k}{N}\right), \qquad 0 \le k \le N-1$$

and component wise spectrum deconvolution by Gramm-Schmidt ortogonalization.

Frequency Domain Approach: Interpolation Formula

A more direct approach is to use a two-step (nonlinear) interpolation formula for the spectrum. For example, the frequency of a peak is given by:

Rectangular:
$$v = \frac{1}{N} \left(n - 1 + \frac{1}{1 + A_{n-1}/A_n} \right),$$

Sine: $v = \frac{1}{N} \left(n - \frac{3}{2} + \frac{2}{1 + A_{n-1}/A_n} \right),$
Hann: $v = \frac{1}{N} \left(n - 2 + \frac{3}{1 + A_{n-1}/A_n} \right)$

While the resolution of the discrete spectrum is only $\sim 1/N$, it is thus improved to $\sim 1/N^{\alpha}$, $\alpha = 2, 3, 4$, respectively; i.e., ignoring the impact of noise (=> academic). Taking the effect of noise into account gives instead

$$\langle \delta v^2 \rangle = \frac{1}{\mathrm{SNR}^2} \frac{2}{N^2} \sim \frac{1}{N^3}.$$

Clearly, a time-domain approach has the same (fundamental) limitation.

For e.g. N = 256 with 1% or 5% noise we obtain $\delta v \sim 4 \times 10^{-5}$, 2×10^{-4} , respectively.

Signal Processing 101: Windowing

$$\nu = \frac{1}{N} \left[k - 1 + \frac{A(k)}{A(k-1) + A(k)} \right] , \qquad k - 1 \le N\nu \le k \quad . \qquad \nu = \frac{1}{N} \left[k - 1 + \frac{2A(k)}{A(k-1) + A(k)} - \frac{1}{2} \right] , \qquad k - 1 \le N\nu \le k = 0$$

First Order Sextupolar Modes (SLS 9/97)

$$J_{x}(N) = J_{x} + \frac{A_{21000}(2J_{x})^{3/2}}{\sin(\pi\nu_{x})} \cos\left(\hat{\phi}_{21000} + \phi_{x} + N2\pi\nu_{x}\right) \\ + \frac{A_{10110}\sqrt{2J_{x}}2J_{y}}{\sin(\pi\nu_{x})} \cos\left(\hat{\phi}_{10110} + \phi_{x} + N2\pi\nu_{x}\right) \\ + \frac{3A_{30000}(2J_{x})^{3/2}}{\sin(3\pi\nu_{x})} \cos\left[\hat{\phi}_{30000} + 3\left(\phi_{x} + N2\pi\nu_{x}\right)\right] \\ + \frac{A_{10020}\sqrt{2J_{x}}2J_{y}}{\sin[\pi\left(\nu_{x} - 2\nu_{y}\right)]} \cos\left[\hat{\phi}_{10020} + \phi_{x} - 2\phi_{y} + N2\pi\left(\nu_{x} - 2\nu_{y}\right)\right] \\ + \frac{A_{10200}\sqrt{2J_{x}}2J_{y}}{\sin[\pi\left(\nu_{x} + 2\nu_{y}\right)]} \cos\left[\hat{\phi}_{10200} + \phi_{x} + 2\phi_{y} + N2\pi\left(\nu_{x} + 2\nu_{y}\right)\right] \\ + O\left(b_{3}^{2}\right), \\ J_{y}(N) = J_{y} - \frac{2A_{10020}\sqrt{2J_{x}}2J_{y}}{\sin[\pi\left(\nu_{x} - 2\nu_{y}\right)]} \cos\left[\hat{\phi}_{10200} + \phi_{x} - 2\phi_{y} + N2\pi\left(\nu_{x} - 2\nu_{y}\right)\right] \\ + \frac{2A_{10200}\sqrt{2J_{x}}2J_{y}}{\sin[\pi\left(\nu_{x} - 2\nu_{y}\right)]} \cos\left[\hat{\phi}_{10200} + \phi_{x} - 2\phi_{y} + N2\pi\left(\nu_{x} - 2\nu_{y}\right)\right] \\ + O\left(b_{3}^{2}\right).$$
(156)

where

$$\hat{\phi}_{ijkl0} \equiv \phi_{ijkl} - \pi \left[(i-j) \nu_x + (k-l) \nu_y \right] \tag{157}$$

On-Line Control of First Order Driving Terms

the frequency spectrum of the betatron motion. We deliberately excite the first order modes with the following values

$$A_{30000} = 6.944, \quad \phi_{30000} = -1.8 \deg,$$

$$A_{10020} = 16.10, \quad \phi_{10020} = 54.0 \deg,$$

$$A_{10200} = 8.26, \quad \phi_{10200} = -70.2 \deg$$
(165)

An easy calculation with formula (156) for the initial conditions

$$Jx = 1.5 \times 10^{-7}, \quad \phi_x = 0.0, \quad Jy = 1.0 \times 10^{-7}, \quad \phi_y = 90.0^{\circ}$$
(166)

gives the spectrum

Figure 7 shows the tracking results. Fourier analysis and interpolation of the tracking data gives

The phase of $\nu = \nu_x - 2\nu_y$ appears with the wrong sign since it is $1 - \nu$ that appears in the spectrum due to aliasing. Let us simply point out then,

Example: Source Analysis

NSLS-II nominal spectrum $v_{x, y} = [33.12, 16.19].$

U.S. DEPARTMENT OF

With a decapole component => $3v_x - 2v_y$

RHIC: Model Based Control (PAC07)

Nikolay Malitsky, APEX Workshop 2006

Challenges:

- Only two chromatic families. However, the 12 arcs have independent power supplies.
- More knobs vs. reduced lattice symmetry.
- Sextupole circuits later rewired to provide 12 independent, symmetric knobs.
- Status (on chromatic control) given at <u>CERN,</u> <u>2011</u>.

Beam Studies SLS (2007)

A. Streun, 2009.

11

Control of Off-Momentum Aperture (SLS)

A. Streun, 2009.

Control of Nonlinear Resonances at DIAMOND (2010)

 $v_x + 2v_y = 52$ compensated.

 $3v_x = 82$ compensated.

In collaboration with R. Bartolini, I. Martin, and J. Rowland.

Model Based Control by Thin Clients

Client-Server Architecture for HLA

 In collaboration with B. Dalesio CD2, 2007.

Improved by G. Shen, L. Yang, and J. Choi:

- Tracy-4: Tracy-3 interfaced to Python and Lex/ Yacc based lattice parser.
- Name srv, Twiss srv, etc.

Conclusions

- 1. We have shown how a first principles, rather than the traditional TME (reductionist) approach, provides a systematic strategy for the design of an IBS limited synchrotron light source. In particular, the insights gained from a proper understanding the scaling laws; governed by physics.
- 2. And summarized on how this approach was used for the NSLS-II CDR (2006). In particular, how come a DBA-30 with damping wigglers, outperformed the originally proposed TBA-24 (2×SLS).
- 3. Similarly, MAX-IV has avoided the "TME trap" (i.e., the "chromaticity wall") as well, by implementing a (realistic) 7BA (with relaxed optics); by clever engineering.
- 4. Which recently inspired PEP-X to re-baseline.
- 5. We have also shown how the control theory problem for a (nonlinear) system ODEs, can be pursued all the way to the control room. By controlling the Lie generators (i.e., the equations of motion) directly. Facilitated by a scalable (aka client/server) software architecture for model-based control.
- 6. Bottom line, a "round beam" synchrotron light source is now within the horizon.

