

EMITTANCE ADAPTER FOR A LOCAL REDUCTION OF THE HORIZONTAL EMITTANCE IN A RING

Pantaleo Raimondi, ESRF - ASD

Alex W. Chao (SLAC) SLAC

European Synchrotron Radiation Facility

Future Light Sources Workshop, Jefferson Lab, March 5-9, 2012

 We investigate the possibility of reaching very small horizontal emittance inside an undulator in a dedicates insertion line of a storage ring

 We investigate the possibility of reaching very small horizontal emittance inside an undulator in a dedicates insertion line of a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid.

- We investigate the possibility of reaching very small horizontal emittance inside an undulator in a dedicates insertion line of a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid.
- The insertion leaves the ring parameters and its optical properties are unaffected.

- We investigate the possibility of reaching very small horizontal emittance inside an undulator in a dedicates insertion line of a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid.
- The insertion leaves the ring parameters and its optical properties are unaffected.
- This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source.

- We investigate the possibility of reaching very small horizontal emittance inside an undulator in a dedicates insertion line of a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid.
- The insertion leaves the ring parameters and its optical properties are unaffected.
- This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source.
- The lattice derivation and design are described.

- This possibility has been extensively studied in the past few years.
- The theory is well established.
- [1] Y. Derbenev, Michigan Univ. Report No. 91-2 (1991); UM HE 93-20 (1993); Workshop on Round Beams and Related Concepts in Beam Dynamics, Fermilab (1996).
- [2] Y. Derbenev, Michigan Univ. Report UM HE 98-04 (1998).
- [3] A. Burov and V. Danilov, FNAL Report No. TM-2040 (1998); FNAL Report TM-2043 (1998).
- [4] R. Brinkmann, Y. Derbenev, and K. Floettmann, Phys. Rev. Special Topics Accel. & Beams, Vol. 4, 053501 (2001).
- [5] A. Burov, S. Nagaitsev, and Ysroslov Derbenev, Phys. Rev. E 66, 016503 (2002).
- [6] A. Burov, S. Nagaitsev, A. Shemyakin, and Ya. Derbenev, Phys. Rev. Special Topics Accel. & Beams, Vol. 3, 094002 (2000).
- [7] Kwang-Je Kim, Phys. Rev. Special Topics Accel. & Beams, Vol. 6, 104002 (2003)
- [8] D. Edwards et al., Proc. 2001 Part. Accel. Conf., Chicago, IL (IEEE, Piscataway, NJ, 2001), p. 73.
- [9] P. Piot, Y.-E. Sun, K.-J. Kim, Phys. Rev. Special Topics Accel. & Beams, Vol. 9, 031001 (2006).
- [10] A. Dragt, F. Neri, G. Rangarajan, Phys. Rev. A 45, 2572 (1992).
- [11] E.D. Courant, H.S. Snyder, Ann. Phys. 3, 1 (1958).

 Several experiments have been successfully carried out, e.g to go from round to flat emittances

THE FLAT BEAM EXPERIMENT AT THE FNAL PHOTOINJECTOR

D. Edwards, H. Edwards, N. Holtkamp, S. Nagaitsev, J. Santucci, FNAL* R. Brinkmann, K. Desler, K. Flöttmann, DESY-Hamburg I. Bohnet, DESY-Zeuthen, M. Ferrario, INFN-Frascati

Figure 1: Very schematic rendition of the layout at Fermilab related to this experiment.

Flat Beam generation from a round cathode

Figure 2: Beam profile on OTR screen 1.2 m downstrear of the third skew quadrupole.

Figure 4: Projection of images used in emittance measurement at slit location and downstream of slit system.

• Reminder of the principle....(idealized)

We can track a parallel beam *Xin* from inside the solenoid through the Its exit.

Then we have a triplet with 90deg phase advance difference in the two planes. We obtain a flat beam *Xout* tilted 45deg w.r.t. the normal axis.

$$X_{in} = \begin{pmatrix} x_0 \\ 0 \\ y_0 \\ 0 \end{pmatrix}; \qquad Sol_{exit} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -k_s/2 & 0 \\ 0 & 0 & 1 & 0 \\ k_s/2 & 0 & 0 & 1 \end{bmatrix}$$
$$Triplet = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \beta \\ 0 & 0 & 1/\beta & 0 \end{bmatrix}; \qquad \beta = 2/k_s; \qquad X_{out} = \begin{pmatrix} x_0 \\ -k_s/2 \cdot y_0 \\ x_0 \\ -k_s/2 \cdot y_0 \end{pmatrix}$$

• Reminder of the principle....(idealized)

We can track a parallel beam *Xin* from inside the solenoid through the Its exit.

Then we have a triplet with 90deg phase advance difference in the two planes. We obtain a flat beam *Xout* tilted 45deg w.r.t. the normal axis.

$$X_{in} = \begin{pmatrix} x_0 \\ 0 \\ y_0 \\ 0 \end{pmatrix}; \quad Sol_{exit} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -k_s/2 & 0 \\ 0 & 0 & 1 & 0 \\ k_s/2 & 0 & 0 & 1 \end{vmatrix}$$
$$Triplet = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \beta \\ 0 & 0 & 1/\beta & 0 \end{bmatrix}; \quad \beta = 2/k_s; \quad X_{out} = \begin{pmatrix} x_0 \\ -k_s/2 \cdot y_0 \\ x_0 \\ -k_s/2 \cdot y_0 \end{pmatrix}$$

Changing the triplet in a skew (45deg tilt) channel, will generate a flat beam:

$$X_{flat} = \begin{pmatrix} \sqrt{2} \cdot x_0 \\ -k_s / \sqrt{2} \cdot y_0 \\ 0 \\ 0 \end{pmatrix}$$

Application in a ring....

We start from a beam with $\beta_x = \beta_y$ and $\alpha_x = \alpha_y = 0$: $\Sigma_0 = \begin{bmatrix} \beta_x \varepsilon_x & 0 & 0 & 0 \\ 0 & \varepsilon_x / \beta_x & 0 & 0 \\ 0 & 0 & \beta_x \varepsilon_y & 0 \\ 0 & 0 & 0 & \varepsilon_y / \beta_x \end{bmatrix}$

 $V = \begin{bmatrix} \cos(\varphi + \frac{\pi}{4}) & \beta_x \sin(\varphi + \frac{\pi}{4}) & 0 & 0\\ -\frac{1}{\beta_x} \sin(\varphi + \frac{\pi}{4}) & \cos(\varphi + \frac{\pi}{4}) & 0 & 0\\ 0 & 0 & \cos(\varphi - \frac{\pi}{4}) & \beta_x \sin(\varphi - \frac{\pi}{4})\\ 0 & 0 & -\frac{1}{\beta_x} \sin(\varphi - \frac{\pi}{4}) & \cos(\varphi - \frac{\pi}{4}) \end{bmatrix}$ Then we have a triplet (skewed) with : (*V* with triplet not rotated)

Then a solenoid with $K_s = 2/\beta_x$. Inside the solenoid we will have: $\Sigma_{sol} = \begin{bmatrix} (\varepsilon_x + \varepsilon_y)/k_s & 0 & 0 & \varepsilon_y \\ 0 & \varepsilon_y k_s & -\varepsilon_y & 0 \\ 0 & -\varepsilon_y & (\varepsilon_x + \varepsilon_y)/k_s & 0 \\ \varepsilon_y & 0 & 0 & \varepsilon_y k_s \end{bmatrix}$

After the solenoid there is an identical triplet and the beam returns uncoupled

We have to remark that the x and y emittances in the canonical coordinates (x, p_x, y, p_y) are larger. They are the average of the two, as shown by the Sigma matrix expressed in canonical coordinates:

$$\Sigma_{can} = \begin{bmatrix} \frac{\varepsilon_x + \varepsilon_y}{k_s} & 0 & 0 & -\frac{1}{2}(\varepsilon_x - \varepsilon_y) \\ 0 & \frac{k_s}{4}(\varepsilon_x + \varepsilon_y) & \frac{1}{2}(\varepsilon_x - \varepsilon_y) & 0 \\ 0 & \frac{1}{2}(\varepsilon_x - \varepsilon_y) & \frac{\varepsilon_x + \varepsilon_y}{k_s} & 0 \\ -\frac{1}{2}(\varepsilon_x - \varepsilon_y) & 0 & 0 & \frac{k_s}{4}(\varepsilon_x + \varepsilon_y) \end{bmatrix}$$

Fortunately the beam properties of interest are determined by the mechanical momenta, so the effective X and Y emittances in the solenoid are roughly:

- An example of an insertion. After the Dispersion suppressor a triplet makes $\beta_x = \beta_y = 6$ m and $\alpha_x = \alpha_y = 0$ at the entrance of the emittance adapter.
- The adapter consists of the solenoid and two skew-triplets on each side. The solenoid has: $k_s = 2/\beta_x = 0.333/m$ (4.2T for a 6GeV beam)
- K values for the skew-quads (50cm long) are around 1

Skew triplet transport matrix (in the upright configuration) is:

$$V = \begin{bmatrix} \cos(\varphi + \frac{\pi}{4}) & \beta_x \sin(\varphi + \frac{\pi}{4}) & 0 & 0 \\ -\frac{1}{\beta_x} \sin(\varphi + \frac{\pi}{4}) & \cos(\varphi + \frac{\pi}{4}) & 0 & 0 \\ 0 & 0 & \cos(\varphi - \frac{\pi}{4}) & \beta_x \sin(\varphi - \frac{\pi}{4}) \\ 0 & 0 & -\frac{1}{\beta_x} \sin(\varphi - \frac{\pi}{4}) & \cos(\varphi - \frac{\pi}{4}) \end{bmatrix}$$

We have set $\varphi = \pi/2$ as an example, but its value is arbitrary. In general the incoming parameters β and α in the adapter section are arbitrary as well, provided that they are equal in the two planes.

For lower values of φ the quads become weaker and the section less chromatic.

Tracking through the adapter for incoming beam displacements ($\varepsilon_x = 10 \text{ nm}, \varepsilon_y = 10^{-2} \varepsilon_x$):

$$x = 10^{-4} \sqrt{\beta_x}; x' = 10^{-4} / \sqrt{\beta_x}; y = 10^{-5} \sqrt{\beta_x}; y' = 10^{-5} / \sqrt{\beta_x}$$

For this particular phase x_{in} becomes pure y in the solenoid and x'_{in} pure x. Only the vertical emittance contributes to $\sigma_{x'}$ and $\sigma_{v'}$ in the solenoid

Simplified Insertion

A more optimized matching (shorter section and fewer magnets), can be realized if we just require $\beta_x = \beta_v$ and $\alpha_x = \alpha_v$.

The first two quads in the straight (one upright and one skew) could be further replaced by just a single quad properly rotated.

Match the beam with the undulator:

- The beam angular divergences in the undulator are:

$$\sigma_{x'} = \sigma_{y'} = \sqrt{\varepsilon_y k_s}$$

For ε_v = 3pm and k_s = 0.333 this corresponds to about 1urad!

European Synchrotron Radiation Facility

Match the beam with the undulator:

- The beam angular divergences in the undulator are:

$$\sigma_{x'} = \sigma_{y'} = \sqrt{\varepsilon_y k_s}$$

$$\sigma_{ph,x'} = \sigma_{ph,y'} = \sqrt{\frac{\lambda}{2L}}$$

For ε_y = 3pm and k_s =0.333 this corresponds to about 1urad! In order not to spoil the potential gain in brightness we need:

1) the undulator to be as long as possible (L > 5-10m) 2) the solenoid as strong as possible (k_s > 1, B > 12T@ 6GeV) 3) the radiation wave length as short as possible

Match the beam with the undulator:

- The beam angular divergences in the undulator are:

$$\sigma_{x'} = \sigma_{y'} = \sqrt{\varepsilon_y k_s}$$

$$\sigma_{ph,x'} = \sigma_{ph,y'} = \sqrt{\frac{\lambda}{2L}}$$

For ε_y = 3pm and k_s =0.333 this corresponds to about 1urad! In order not to spoil the potential gain in brightness we need:

1) the undulator to be as long as possible (L > 5-10m) 2) the solenoid as strong as possible (k_s > 1, B > 12T@ 6GeV) 3) the radiation wave length as short as possible

These requirements are very hard to achieve.

It is not going to be easy to find a suitable solution for the existing rings.

The key element is the realization of an Undulator in a very powerful SC Solenoid with very large k and short period...

European Synchrotron Radiation Facility

Possible undulator scheme: Staggered undulator [1] (J.Chavanne)

[1] A. H. Ho, R. H. Pantell, J. Feinstein, B. Tice, Nucl. Instrum. Methods A296, 631 (1990)

Conclusions

- The emittance adapter has the potential to lower the horizontal emittance in the Insertion Devices.

- The optics requirements for the transport line are easy to meet with the present technology.

- However the requirements for the Undulator+Solenoid are very challenging.

- If some feasible solution is found:

Present facilities could improve their performance on some dedicated ID.

Future Light Sources could relax some requirements on their parameters or further boost their performance.