Proposal on testing x-band bunch compression at NLCTA

Yipeng Sun

ICFA Workshop on Future Light Sources March 5-9, 2012

Motivation and simulation conditions

Motivation for future X-band FELs

Demonstrate effective bunch compression (10 to 20 times) with x-band RF

- Scheme 1: use normal chicane + positive RF chirp (current NLCTA)
- Scheme 2: use optics w/ higher order dispersion + positive/negative RF chirp (need to install 4/6 sextupoles in the big chicane)

oInvestigate tolerances on timing jitter, misalignment etc.; emittance growth

Simulation condition:

✓In Elegant, transverse and longitudinal wake of X-band cavities, 1D coherent synchrotron radiation (CSR) and ISR, longitudinal space charge (LSC)

- ✓ CSRDRIFT between all bends with the "USE_STUPAKOV" option
- $\checkmark \text{CSR}$ induced steering removed by 'center' element in Elegant

 \checkmark 0.5 million macro-particles

✓ For scheme 1, current operating optics

✓ For scheme 2, new optics

✓ 20 pC beam at 5MeV, 0.5ps RMS bunch length, 6e-3 RMS energy spread, 1 mm.mrad transverse emittance

✓ Beam energy: 60 MeV at BC1, 120 MeV at BC2

Bunch compression NLCTA Page 2

NLCTA optics (current configuration)

Scheme 1 (1) L-phase, current and bunch length

Scheme 1 (2) no compression, on crest

Scheme 1 (3) 2 stage 20 times BC, linac end

Scheme 2 (1) optics

Install 4/6 sextupoles in the big chicane, at 60 MeV

Chicane w/ quadrupole+sextupole,6 meters long $K1_Q < 18 (0.13m Quad)$ R_{56} tunable, T_{566} tunable $K2_S < 70 (0.1m sextupole)$

Bunch compression NLCTA Page 7

Scheme 2 (2) L phase and current

Over compression

Scheme 2 (3) 1 stage 10 times BC, linac end

Effect of CSR, scheme1&2

CSR=0 in all bends and CSRDRIFT

sigma matrix--input: LCLSII06JAN11.ele lattice: LCLSII06JAN11.lte

Effect of timing jitter, scheme1&2

Effect of Quad+ACC alignment, scheme1&2

Quad, ACC, Quad-BPM offset RMS=200um (x&y); Quad roll RMS=200urad 20 seeds

Effect of BC Quad+Sext alignment, scheme2

enx0=1.20um

eny0=0.97um

Page 13

Bunch length diagnostics

Summary

- Two bunch compression schemes proposed at NLCTA
- > 10-20 times compression ratio
- Tolerances acceptable in simulation
- Measured by X-band TCAV

	Initial	Scheme 1	Scheme 2
Energy [MeV]	5	120	60
Bunch length [fs]	500	26	50
Peak current [A]	15	450	160
Emittance x/y [um]	1/1	1.2/1	1.2/1
Energy spread [%]	0.6	0.8	0.5

I would like to thank the following people for their great help and useful discussions:

C. Adolphsen, K. Bane, A. Chao, Y. Cai, Y. Ding, J. England, P. Emma, Z. Huang, C. Limborg, Y. Jiao, Y. Nosochkov, T. Raubenheimer, M. Woodley, W. Wan, J. Wu

Thank you for your patience!

