

Status of the low-alpha mode at SOLEIL

A. Loulergue

On behalf of the Accelerator Physics Group

- Introduction: bunch length measurements
- Reminder of optics
- Non-linear dynamics
- Low-alpha operation
- On the user side: THz and X-ray short bunch science
- CSR measurement and modeling

Introduction: bunch length measurements

Picosecond streak camera Hamamatsu C5680 *Resolution: 2 ps fwhm*

Typical bunch lengthening

Reminder of optics

Horizontal dispersion function at nominal $\boldsymbol{\alpha}$

Reminder of optics

M. Attal et al., to be published

Reminder of optics

Optical functions at nominal α

But..

Transverse dynamics is strongly affected..

Future Light SourcesMarch 5-9, 2012Low-alpha mode at SOLEIL

Non-linear dynamics

ON momentum transverse acceptance:

Strongly non-linear dynamics

Non-linear dynamics

Injection rate is strongly affected by the reduced ON and OFF momentum transverse acceptances

Non-linear dynamics

Energy acceptance:

SOLEIL

at nominal $\boldsymbol{\alpha}$

CSR and short bunch operation

On December 10-11th, 2011 the so-called low-alpha mode operation has been delivered to users, which provides:

- The enhanced production of THz radiation for 'AILES' IR beam line
- Time resolved short X-rays (4.7 ps 1.9 mm RMS bunch length) for **2 beamlines**

Operation of 2 x 2 days is foreseen for 2012

→ Hybrid filling mode in order to satisfy both time resolved Xray and Infrared communities

α_1 value	$\alpha_{1 \text{ nominal}}/25 = 1.8 \ 10^{-5}$	
α_2 value	$\alpha_2 = 10^{-4}$	
Total current, current per bunch	18 mA, 65 μA	
MS Bunch length 4.7 ps		
Horizontal emittance, coupling	8 nm rad, 4 %	
Lifetime	20 hours	
RF voltage	3.2 MV	

- α_1 and $V_{\rm RF}$ chosen on the basis of THz spectrum optimization
- Current per bunch is limited by the microbunching instabilities threshold: 67 μ A per bunch at α_1 /25

- Beam current stability:
 - $\circ\,$ refilling once per hour with 3µA/bunch (tight requirement for THz spectrum stability),
 - $\circ\,$ injection with shutters open foreseen for the next operation (April 2012), radiation safety tests in progress.
- Source point position stability: Slow and Fast orbit feedback systems effective (slightly deteriorated in H plane with respect to the normal α mode)

- Beam current stability:
 - $\circ\,$ refilling once per hour with 3µA/bunch (tight requirement for THz spectrum stability),
 - $\circ\,$ injection with shutters open foreseen for the next operation (April 2012), radiation safety tests in progress.
- Source point position stability: Slow and Fast orbit feedback systems effective (slightly deteriorated in H plane with respect to the normal α mode)

Science with THz

THz spectroscopy using a Fourier Transform interferometer

 \rightarrow 3 important criteria:

Intensity and brilliance

AILES beamline: highly collimated beam thanks to dipole edge radiation

Confirmed flux gain of ~ 10^4 - 10^5 with CSR

AILES beamline optics dimensioned for long wavelengths (extraction mirror, transport mirrors)

Stability

Ph.D. project: noise correction system (J. Barros, to be published)

- → Attenuates the effects of microbunching
- → High spectral resolution: more sensitive to intensity fluctuations

Future Light Sources March 5-9, 2012

Low-alpha mode at SOLEIL

Intensity (a. u.)

http://www.synchrotron-soleil.fr/Recherche/LignesLumiere/AILES

THz: energy range of (quantified) rotational transitions of molecules in gas phase \rightarrow High-resolution spectroscopy needed to detect the corresponding absorption lines

SVNCHRO

CSR measurement and modeling

CSR measurement and modeling

Above a current threshold, appearance of microstructures in the longitudinal charge density

C. Evain et al., submitted to EuroPhysics Letters

Low-alpha mode at SOLEIL

CSR measurement and modeling

Simulation : CSR, Resistive Wall and geometric impedance wakes J-B Murphy, K. Bane, GdfidL

Bunch current scan over 10^4 turns ($\tau_{RS} \sim 2800$ turns)

RW and geometric wakes lengthen further the bunch and slightly shift the burst threshold.

CSR measurement and modeling

Simulation : CSR, Resistive Wall and geometric impedance wakes J-B Murphy, K. Bane, GdfidL

Bunch current scan over 10^4 turns ($\tau_{RS} \sim 2800$ turns)

Resistive Wall seems to be the driving term of micro-bunching instability

Low-alpha mode at SOLEIL

Conclusion

Get a better injection efficiency Operate in top-up mode Test negative alpha mode

Parameters	Design	Achieved as of Feb 2012
Energy (GeV)	2.75	2.74
RF frequency (MHz)	352.202	352.196
Betatron Tunes	18.20 / 10.30	18.202/10.310
Momentum Compaction $\alpha_1^{}$ / $\alpha_2^{}$	4.5 x 10 ⁻⁴ / 4.6 x 10 ⁻³	4.5 x 10 ⁻⁴ / 4.6 x 10 ⁻³
Emittance H (nm.rad)	3.9	3.9
Energy spread	1.016 x 10 ⁻³	1.016 x 10 ⁻³
Coupling, E _V /E _H	<1%	0.7% (w/o corr.) 1% (w/ V dispersion)
Current Multibunch mode (mA)	500	500 (400 for Users operation)
Average Pressure (mbar)	1 x 10 ⁻⁹	1 x 10 ⁻⁹ @ 500 mA
Beam Lifetime (h)	16 h	20h @ 400 mA / 14h @ 500 mA