Cathode Laser Pulse Shaping For High Brightness Electron Sources (PITZ Experience)

Mikhail Krasilnikov (DESY) for the PITZ Team

ICFA Workshop on Future Light Sources, March 5-9, 2012 Thomas Jefferson National Accelerator Facility, Newport News, VA

Content:

- Photo cathode laser system at PITZ
- Temporal pulse shaping flat-top profile:
 - rise/fall time impact
 - flat-top modulations studies
- Transverse laser distribution influence
- Advanced pulse shaping of the cathode laser: 3D ellipsoid
- Summary

PITZ Photo cathode laser (Max-Born-Institute, Berlin)

Photo cathode laser: temporal pulse shaping

MBI

Multicrystal birefringent pulse shaper containing 13 crystals

Gaussian:

Photo cathode laser: flat-top temporal pulse profiles

Laser temporal profile used for the emittance optimization at various bunch charge levels

Check effect on rise/fall time - results of 2009

•Q=InC •Imain→optimized •Gun: +6deg off-crest •Booster: on-crest •Laser: temp FWHM~20ps, BSA=1.5mm

- In 2009 it was not possible to measure the effect with current machine stability
- After the improvement of the phase stability the effect is planned to be rechecked (this year)

Various laser temporal flat-top modulations Simulations

- higher modulation frequency → larger emittance growth rate
- reliable simulations for modulations with >5 peaks are difficult

Laser temporal profile modulations

Experiment: measurements in 2009

In 2009 it was not possible to measure the effect with the current machine stability

Measurements with / without modulations on the temporal laser distribution

Approach → detuning of an aligned pulse shaper, i.e. by purpose introducing modulations on the flat-top of the temporal laser distribution and measuring momentum distribution in HEDA

Studies for Particle Driven Plasma Acceleration @PITZ

 Self-modulation with seed pulse:

V

 n_{b2}

Longitudinal coordinate inside the bunch, [mm]

 n_{b1}

3.5

2.5 2 1.5 2.5

0.5

Output parameters for 2 sub-bunches @6.28m from cathode: Gauss: Q = 10 pC, $\sigma_z = 0.311 mm$ $\sigma_{xy} = 83.25 \ \mu m$, $\varepsilon_{xy} = 0.471 mm mrad$ $n_{b1}[cm^{-3}] = 3.69 \cdot 10^{12}$

$$n_{b2}[cm^{-3}] = 1.05 \cdot 10^{13}$$

Photo cathode laser: transverse pulse shaping

Photo cathode laser: transverse distributions

BSA=1.2mm (1nC)

BSA=0.5mm (0.1nC)

RMS sizes (no Gaussian fit!) σ_x =0.30 mm and σ_y =0.29 mm

RMS sizes (no Gaussian fit!) σ_x =0.13 mm and σ_v =0.12 mm

PITZ

Laser pulse shaping studies for further improvement of the electron beam quality in a photo injector

BD simulations for bunch charge 1 nC

BD simulations for bunch charge 1 nC

Transverse phase space at z=5.74m

Electron beam transverse distribution at z=5.74m

BD simulations for bunch charge 1 nC

Electron beam (Z-X) shape at z=5.74m

Longitudinal phase space (Z-Pz) at z=5.74m

Conclusions

- Cathode laser pulse shaping is one of the key parameters for a high brightness photo injector
- Nominal temporal pulse shape at PITZ a flat-top of ~ 20ps FWHM
 - Short rise/fall time, first trials were performed in 2009, to be checked soon
 - Flat-top modulations: no large impact onto the transverse phase space, but longitudinal phase space modulations
- > Transverse laser distribution:
 - Laser transport and imaging to the cathode
 - "Fresh cathode" effect → homogeneous emission area
- > Beam dynamics simulations applying a 3D pulse shaping (ellipsoid) for the PITZ injector yield :
 - significant reduction in beam projected and slice emittance
 - reduced beam halo and less sensitivity to machine parameters
 - less nonlinear longitudinal phase space

practical realization \rightarrow BMBF project with IAP, Nizhniy Novgorod, Russia

