Problems observed at PITZ: measurements vs. simulations

Mikhail Krasilnikov (DESY) for the PITZ Team

ICFA Workshop on Future Light Sources, March 5-9, 2012 Thomas Jefferson National Accelerator Facility, Newport News, VA

Content:

- Measured and simulated emittance at PITZ:
 - vs. bunch charge
 - vs. laser transverse size
 - vs. main solenoid current
 - main components (gun, booster, cathode laser)
- Measured and simulated transverse phase space:
 - rather good agreement for 100pC
 - discrepancy for higher bunch charges
 - charge production issue
- Summary

Emittance vs. Laser Spot size for various charges

Charge, nC	Meas., mm mrad	Simul., mm mrad
2	1.25	1.14
1	0.70	0.61
0.25	0.33	0.26
0.1	0.21	0.17
0.02	0.12	0.06

Minimum emittance

 Optimum machine parameters (laser spot size, gun phase): experiment ≠ simulations

- Difference in the optimum laser spot size is bigger for higher charges (~good agreement for 100pC)
- A radial homogeneous laser pulse distribution is used in simulations whereas the experimental transverse distribution is not perfect
- Artificial increase of the thermal kinetic energy at the cathode (from 0.55eV to 4eV) did not improve the understanding

PITZ Photo Injector Test Facility

Emittance vs. (Imain/I*-1) for various bunch charges: $M \leftarrow \rightarrow S$

simulated I*=388.9A

∆I*(M-S)=4.2A

simulated I*=388A

∆I*(M-S)=4A

3%

simulated I*=383.8A

∆I*(M-S)=10.2A

2.0%

4%

2%

2.0%

1.0%

0.0%

-1%

-1.0%

solenoid detuning, %

0%

0.0%

solenoid detuning, %

solenoid detuning, %

1%

1.0%

Mikhail Krasilnikov | Cathode Laser Pulse Shaping For High Brightness Electron Sources | FLS 2012, 6.03.2012 | Page 3

Measured and Simulated Emittance: 0.1nC

Rather good agreement in both beam rms size and emittance!

Mikhail Krasilnikov | Cathode Laser Pulse Shaping For High Brightness Electron Sources | FLS 2012, 6.03.2012 | Page 4

Measured and Simulated Phase Space at EMSY1: 0.1nC

Measured and Simulated Emittance: 1nC

Optimum laser rms spot sizes:

- Experimental XYrms=0.30mm (BSA=1.2mm)
- XYrms=0.4mm → from simulations
- Simulated electron beam size at EMSY1 is still larger than the measured one
- Applying 0.3 mm laser spot to the simulation it is impossible to produce 1nC!

Reasons of discrepancy for high $Q? \rightarrow$ Emission from the cathode?

1.6

measured charge (XYrms=0.3mm, 0deg) 1.4 charge@LOW.ICT1, nC simulated charge (XYrms=0.3mm, 0deg) 1.2 1.0 0.8 0.6 0.4 bunch 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 ~ laser intensity, nC

Measured and simulated laser energy scan (1nC)

· Laser intensity (LT) scan at the MMMG phase (red curve with markers) shows higher saturation level, whereas the simulated charge even goes slightly down while the laser intensity (Qbunch) increases

Possible reasons:

- Field enhancement of the photo emission (Schottky-like effect) should be taken into account ٠
- Laser imperfections (transverse halo and temporal tails) could contribute at high charge densities

Direct plug-un machine settings into ASTRA does not produce 1nC at

the gun operation phase (+6deg), whereas 1nC and even higher charge (~1.2nC) are experimentally detected

Simulated (ASTRA) phase scans w/o Schottky effects (solid thick lines) have different shapes than the experimentally measured (thin lines with markers)

. . .

Summary

- Simulated optimum machine parameters (laser spot size and RF gun phase) ≠ to those obtained experimentally
- Photo emission (bunch charge) needs more detailed modeling in simulations
- > Tails (~horizontal) in the beam distribution:
 - X-Y asymmetry
 - Horizontal beam tails (beamlets from tails are not detectable)

??Reasons:

- Remaining magnetizable components
- Vacuum mirror
- Solenoid imperfection
- Stray fields from IGPs
- -

