

Effects of Several Very Long Undulators in the APS ERL Design

Michael Borland

Argonne National Laboratory

March 2012

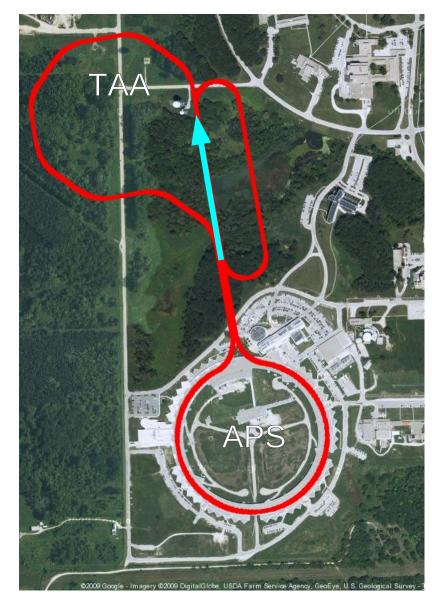
Introduction

Brightness of photon beam is roughly¹

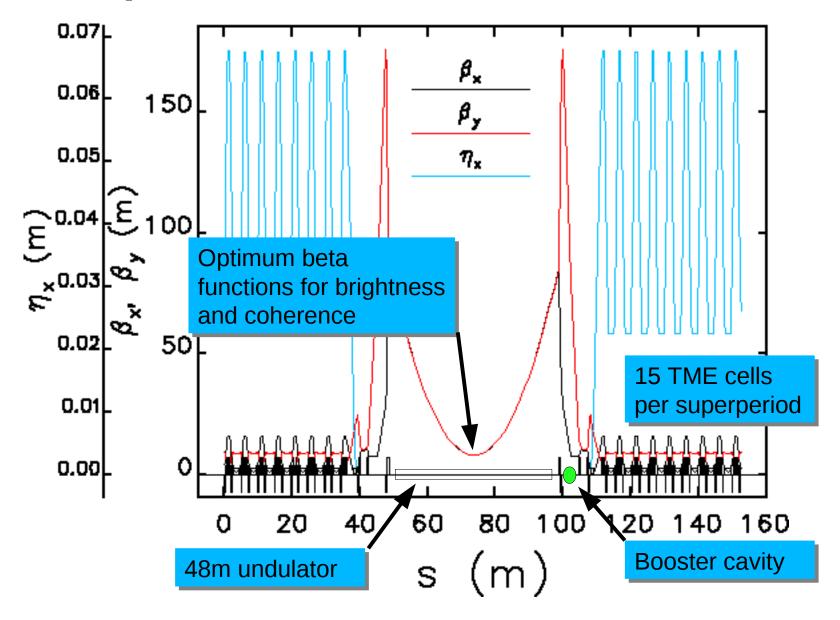
$$B \propto \frac{I_e}{E_x E_y \sqrt{4\sigma_\delta^2 + \left(\frac{0.4}{N_u h}\right)^2}}$$

$$E_x = \sqrt{\left(\epsilon_x \beta_x + \frac{\lambda L}{8\pi^2}\right) \left(\frac{\epsilon_x}{\beta_x} + \frac{\lambda}{2L}\right)} \ge \epsilon_x + \frac{\lambda}{4\pi}$$

- ERLs promise three interesting features:
 - Low energy spread (e.g., 0.02%)
 - Diffraction-limited emittance, $\epsilon \leq \lambda/(4\pi)$
 - Ideal beta functions, $\beta \approx L/(2\pi)$
- Results in
 - Ability to take advantage of long undulators (e.g., >1000 periods)
 - Improved performance for high harmonics
 - Large coherent fraction
- Need to look at impact of long undulators


1:S. Benson et al., NIM A 637 (2011) 1-11.

An "Ultimate" ERL@APS Concept


- Two-pass 7 GeV linac with 7 GeV turn-around arc
 - Two-pass linac shown as costreducing measure
 - Accelerate away from APS to put highest-quality beam into TAA
- TAA has nine 50-m straight sections
 - Accommodates 48-m undulators to get maximum benefit from beam quality

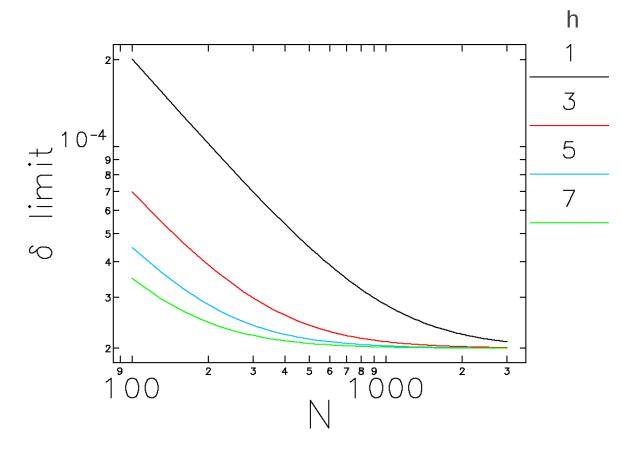
¹M.Borland *et al.*, NIM A 582 (2007) 54-56. ²M.Borland et al., Proc. PAC09, 44-48.

TAA Optics

How Does Energy Shift Affect Brightness?

- Beam momentum changes downstream of an undulator as the user changes the gap
- If beam momentum shifts, the photon energy shifts by

$$\left|\frac{\Delta\lambda}{\lambda}\right| = 2\left|\delta\right|$$


The effective linewidth of the photon spectrum is

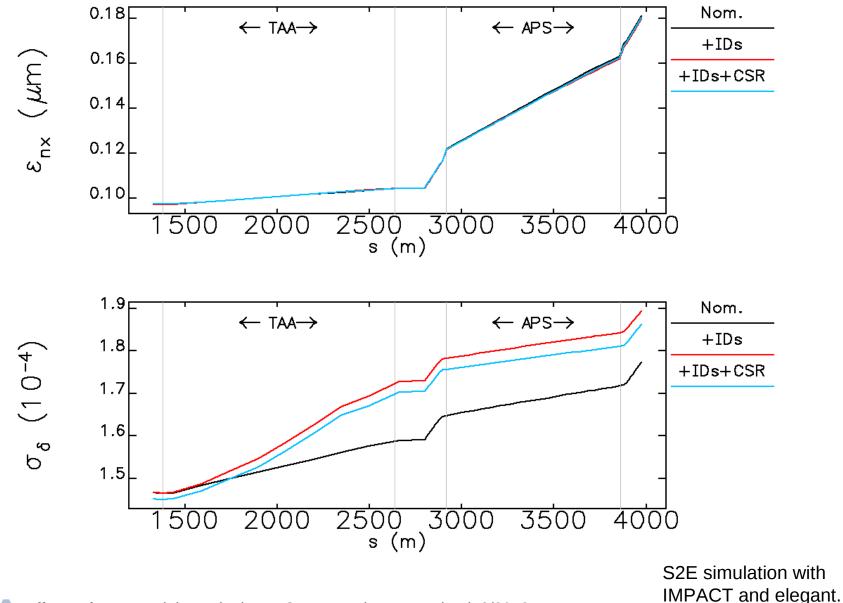
$$\frac{\sigma_{\lambda}}{\lambda} = \sqrt{\left(2\sigma_{\delta}\right)^2 + \left(\frac{0.4}{Nh}\right)^2}$$

To avoid moving the spectrum "too much", we require

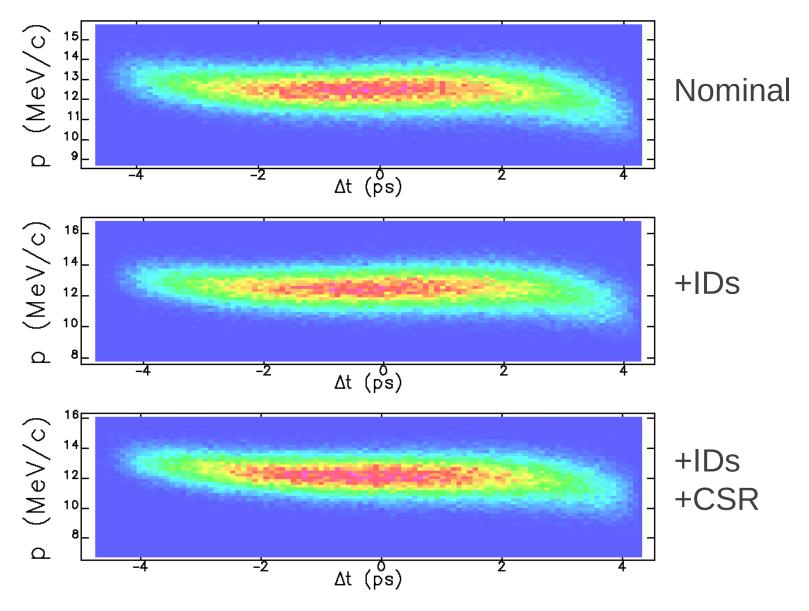
$$\left|\delta\right| \ll \frac{1}{2} \frac{\sigma_{\lambda}}{\lambda}$$

Energy shift limit for 2x10⁻⁴ energy spread

For long undulators, the maximum allowable energy shift is approximately 1/10th the rms energy spread.



Need for Booster Cavities


- Users must vary undulator gaps, causing energy variation downstream
 - With long devices, variation may exceed the energy spread (1.4 MeV)
 - If uncompensated, will adversely impact downstream users
 - We also need to limit variation in
 - Energy of recovered beam
 - Time of flight through the TAA and APS
 - Energy offset in the 3.5 GeV arcs
- We used a representative set of APS undulator designs
 - Assess impact on beam dynamics
 - Estimate booster cavity parameters
- Booster cavities may be needed in the APS ring portion as well
 - Want to use 8m undulators
 - Could devote every Nth straight section to a cavity

Undulator		Booster cavity		Number
Period	K	Voltage	Power	
mm	max.	MV	kW	
18	0.45	0.11	2.7	1
23	1.20	0.46	11.6	1
27	1.78	0.74	18.5	2
30	2.20	0.92	22.9	1
33	2.74	1.18	29.4	2
35	3.08	1.32	33.0	1
55	4.97	1.39	34.8	1

Beam Evolution in 7GeV Portion (19 pC)

Final Longitudinal Phase Space

Conclusions

- Even with 9 very long undulators, impact is modest
- Use of booster cavities seems advisable
 - May be necessary only for long-period devices
- Energy spread increase is fairly modest
 - Final energy spread of ~1.3 MeV with all gaps closed
- No emittance growth seen
 - Conclusion should be checked with realistic optics errors (i.e., dispersion leaking into straight sections)
- More detail available in
 - M. Borland, G. Decker, X. Dong, L. Emery, A. Nassiri, Proc. PAC09, 44-48 (2009).

