

Ultra-bright Designer Photocathodes

Katherine Harkay Argonne, APS

Future Light Sources Workshop JLab, Newport News, VA March 8, 2012

Acknowledgements

Argonne: Károly Németh Richard Rosenberg Badri Shyam George Srajer Joseph Zsolt Terdik (student) Marion White Zikri Yusof Sasha Zholents

Illinois Institute of Tech (IIT): Linda Spentzouris Jeff Terry Aditya Unni Chris Kalnmals (student) Daniel Velazquez (student)

LBNL: Gennadi Lebedev

Thanks to: D. Dowell, I. Bazarov, C. Hernandez-Garcia, W. Hess, R. Legg, B. Militsen, H. Padmore, T. Rao, J. Smedley, W. Wan

Outline

- Introduction ullet
- Approach, results, and plans: ullet
 - Design •
 - Synthesize
 - Characterize •
- Summary ullet

Introduction

- Ultra-bright photocathodes are a key technology for the development of future light sources.
- Two approaches are applicable, depending on time-frame:
 - Near-term: Optimize the synthesis and performance of long-known photocathodes such as Cs₂Te, CsKSb, GaAs (ANL, ASTeC, BNL, HFZD, INFN, JLab, LBNL, PITZ, et al.)
 - Mid-to-far-term: Explore novel crystal systems numerically and optimize ("design") their properties, or nano-engineer surfaces, or other novel idea (ANL, ASTeC, BNL, Eindhoven, Jlab, LBNL, SLAC, UCLA, Vanderbilt, et al.).
- Properties to design or tune include:
 - Intrinisic emittance
 - Workfunction
 - QE
 - Reliability, robustness (vacuum, E-field, field emission)

4

Approach to cathode design

- **Design** (accelerator & condensed matter physics, computational chemisty)
 - Derive cathode requirements from future light source requirements.
 - Investigate candidate systems; compute electronic properties.
 - Select systems with promising predicted properties for synthesis.
- **Synthesize** (chemistry, materials science)
 - Develop & test hypotheses for chemical reactions.
- **Characterize** (surface science, materials science)
 - Develop portable load-lock system.
 - Develop cross-compatible sample transfer system. •
 - Compare measurements with predictions. •

Design

Main tool:

• Quantum-chemical Density Functional Theory (DFT)-based surface-physics calculations.

Two codes used:

- PWSCF (crystal lattice parameters, workfunction, gap energy, surface energy)
- YAMBO (optical absorption spectra)

Two of our cathode concepts:

- Tuning workfunction and intrinsic emittance using ultrathin films.
- Tuning the workfunction of Cs₂Te.

Potential low-transverse-emittance layered structure

Photoemission from Cs₂Te cathode

- Workfunction increases and QE decreases as Cs₂Te ages.
- Pushing the Cs₂Te photoemission (workfunction) to visible/infrared would have tremendous advantages!

Quantum efficiency of Cs_2 Te exposed to small gas molecules, such as O_2 , CO_2 , CO_1 , N_2 and CH_4 • Another important

[A. di Bona, et.al. J.Appl.Phys. 80 (5), 1996]

- Another important, relatively common small molecule, acetylene, C₂H₂ (e.g. for welding), was not investigated.
- What about reacting Cs₂Te with acetylene?
- Acetylene is fairly reactive, easily losing its hydrogens, which takes electrons away from the material in contact. This forms "acetylides," containing the acetylide anion [:C:::C:]²⁻, commonly denoted as C₂²⁻.

A₂MC₂ Type Ternary Acetylides

Fig. 3 Crystal structure of Na_2PdC_2 (P $\overline{3}m1$, Z = 1). Selected interatomic distances are: Pd-C 200.2(2) pm, Na-Pd 296.8(2) pm, Na-C 263.1(1) pm, C-C 126.3(3) pm.

[Fig: U. Ruschewitz, Z. Anorg. Allg. Chem. 632, 705, 2006.]

- Unique 1D substructures, where A=alkali metal and M=transition metal or metalloid.
- All known A₂MC₂ are colored semiconductors with 2.1-2.8 eV direct bandgaps.
- Synthesized so far: M∈[Pt,Pd] and A∈[Na,K,Rb,Cs].
- We investigated acetylated Cs₂Te, where M=Te and A=Cs
- Completely new class of materials for photophysics and low-workfunction applications (e.g., fieldemission displays).
 Provisional patent application filed: K. Nemeth et al.

Experimental vs. DFT-calculated workfunctions (φ)

TABLE III: Experimental and calculated (DFT) properties of photoemissive surfaces of validation materials: workfunctions (Φ) , bandgaps at the Γ -point $E_g(\Gamma)$ and surface energies (σ) .

Compound	Φ (eV)		$\mathbf{E}_g(\Gamma)$ (eV) σ (eV/Å ²		
and surface	EXPT	\mathbf{DFT}	DFT	DFT	
Cs(100)	2.14 [21]	2.00	0.29	0.005	
Te(001)	4.95 [21]	5.02	0.54	0.036	
$Cs_2Te(001)$	2.90 - 3.0 [22]	3.08	0.77	0.015	
$Cs_2Te(010)$	2.90 - 3.0 [22]	2.90	1.04	0.014	
$(Cs)Na_3KSb$	1.55 [23]		2-1	-	
$\mathrm{K}_{2}\mathrm{CsSb}$	$1.9-2.1 \ [24, \ 25]$	122	17 <u>1</u> 7	-	

J.Z. Terdik, K. Nemeth, K. Harkay, et al, submitted for publication.

- Good agreement for Cs, Te, Cs₂Te; we are confident of predictions for theoretical systems with these components.
- Note low workfunctions for K₂CsSb and (Cs)Na₂KSb (engineered for high QE).

Calculated ϕ for selected A_2MC_2

- Significant φ anisotropy among rod-perpendicular (001) and rod-parallel, (110) and (010), orientations.
- Cs₂TeC₂ (010) and Cs₂PdC₂ (010) are photo-emissive in visible to near-IR!
- Comparable-to-better φ than K₂CsSb and (Cs)Na₂KSb (1.55-2.1 eV).
- Rod-perpendicular surface could act like a 2D nanotip array.

J.Z. Terdik, K. Nemeth, K. Harkay, et al, submitted for publication.

K. Harkay FLS2012 Mar 2012

TABLE IV: Calculated (DFT) properties of photoemissive surfaces of acetylide compounds: workfunctions (Φ), bandgaps at the Γ -point $E_g(\Gamma)$ and surface energies (σ). Relaxed slabs refer to the relaxation of unrelaxed ones with the central 2 layers fixed. For h-Cs₂C₂(001) and Na₂TeC₂(010), $E_g(\Gamma) \approx 0.05$ eV has been found for a single band above E_F as well.

Compound	unrelaxed		relaxed			
and	Φ	$\mathrm{E}_{g}(\Gamma)$	σ	Φ	$\mathbf{E}_g(\Gamma)$	σ
surface	(eV)	(eV)	$(\mathrm{eV}/\mathrm{\AA}^2)$	(eV)	(eV)	$(\mathrm{eV}/\mathrm{\AA}^2)$
$o-Cs_2C_2(010)$	2.80	1.25	0.023	-	-	-
$h-Cs_2C_2(001)$	2.56	1.14	0.027	-	-	-
$Na_2PdC_2(001)$	3.58	1.13	0.067	-	-	-
$Na_2PdC_2(110)$	3.73	1.65	0.029	4.17	2.34	0.024
$Na_2PdC_2(010)$	2.65	1.91	0.019	2.68	2.45	0.017
$Cs_2PdC_2(001)$	2.90	1.43	0.046	-	-	-
$Cs_2PdC_2(110)$	2.73	0.88	0.026	2.73	1.16	0.022
$Cs_2PdC_2(010)$	1.33	0.78	0.015	2.03	1.74	0.013
$Na_2 TeC_2(001)$	3.40	1.03	0.029	-	-	-
$Na_2 TeC_2(110)$	3.80	0.91	0.025	4.67	2.04	0.009
$Na_2 TeC_2(010)$	2.75	1.43	0.015	2.68	1.34	0.015
$Cs_2TeC_2(001)$	3.71	1.86	0.022	-	-	-
$Cs_2TeC_2(110)$	2.77	0.77	0.020	2.98	1.38	0.019
$Cs_2 TeC_2(010)$	1.71	1.00	0.013	2.44	1.63	0.009

Density of states (DOS)

DOS of Cs_2TeC_2 is comparable to Cs_2Te ; computed using PWSCF (Terdik, Nemeth).

QE estimation

- Computed the optical absorption spectra (i.e., imaginary part of dielectric constant) using YAMBO (Nemeth).
- QE of Cs₂TeC₂ expected to be comparable to Cs₂Te.

Synthesis/Characterization

- Collaborations in place, but we welcome more!
 - PPNL working on MgO-Ag system (see W. Hess's talk)
 - IIT-ANL working on ternary acetylide systems. *Patent application in process, K. Nemeth et al.*
- Two modes are possible for synthesis/characterization:

	pros	cons
separated	Specialized expertise: consistent cathode quality/performance.	Load-lock sample transport needed.
combined in one system	No transport needed.	Long learning curve to achieve consistent quality/perform.

- Preference for option 1 (ternary acetylides):
 - Local Cs₂Te expert: Z. Yusof and colleagues (ANL/AWA) (QE 10%).
 - Expertise in synthesis and surface science and instrumentation is distributed (ANL/APS, ANL/ MSD, IIT, LBNL, etc.)

Characterization

Goal:

- Was desired compound synthesized? X-ray diffraction, XPS, ...
- Does it perform as predicted? Workfunction, QE, ARPES (intrinsic emittance), ...

Tools available or planned:

- Load lock system (vacuum hardware, sample-transfer hardware)
- Kelvin probe (workfunction)
- ARPES at LBNL/ALS beamline (being commissioned, G. Lebedev)
- ARPES at ANL, IIT (under development)

Formation of Na₂PdC₂ as observed by X-ray diffraction in the traditional synthesis. [U. Ruschewitz, Z. Anorg. Allg. Chem. 632,705 (2006)].

Fig. 1 Formation of Na₂PdC₂ from Na₂C₂ and palladium with increasing temperature as measured on an X-ray powder diffractometer (Huber G644, CuK α_1 radiation). The reflections of the starting materials and the product are assigned.

Cs₂Te Photocathode - Fabrication and Vacuum Transfer

Cross-compatible sample transfer hardware to be installed inside load-lock

Example: designed by R. Rosenberg.

FY12 Plans

1: Test transfer & characterization of Cs₂Te

- Transfer Cs₂Te from ANL to LBNL
- ALS sample transfer hardware to be adapted to AWA Cs₂Te chamber and load-lock system.
- Measure intrinsic emittance in ARPES TOF system being installed on ALS (G. Lebedev).

2: Ternary acetylide

- Synthesize Cs₂TeC₂ or other ternary acetylide at IIT and characterize at APS (QE, workfunction, structure).
- Synthesize/transfer Cs₂TeC₂ and characterize in LBNL and ANL or IIT ARPES systems.

Beyond FY12:

- Transfer to and characterize performance in an electron gun.
- Where? LBNL APEX VHF injector, Jlab, APS Injector Test Stand, ...

Resources

2009 Sept, DOE/BES Workshop on Accelerator Physics of Future Light Sources D. Dowell et al., Nucl. Instrum. Meth A 622, 685 (2010).

Physics of Photocathodes for Photoinjectors

2010, Oct 12-14, BNL http://www.bnl.gov/pppworkshop/

2012, Oct 8-10, Cornell Announcement & web site posted soon

Several European photocathode workshops

Summary

- Ultra-bright photocathodes are a key technology for future light sources.
- We are thinking "outside the box" to tune photocathode properties to enhance future light source performance. More work is needed.
- MgO-Ag system has been shown experimentally to reduce the workfunction; calculations predict ultra-low transverse emittance.
- "Designer" acetylated Cs₂Te Cs₂TeC₂ and other systems in this class are predicted to have low workfunctions in the visible to near-IR range. The QE of Cs₂TeC₂ is predicted to be comparable to Cs₂Te. The rod-perpendicular orientation may exhibit low emittance.
- Synthesis of both ideas is ongoing through collaborations (PNNL and IIT/ANL, respectively) and additional collaborators are welcome.
- Characterization using surface science techniques is planned at APS and at LBNL/ALS beamline ARPES system; load-lock transfer needed.
- Characterization in a gun of promising cathodes is desired; load-lock transfer needed.