

Insertion Devices activity at SOLEIL

M. E. Couprie,

GMI : H. Abualrob, C. Benabderrahmane, P. Berteaud, F. Briquez, L. Chapuis, T. El Ajjouri, O. Marcouillé, F. Marteau, M. Massal, M. Valleau, J. Vétéran

Beam dynamics : P. Brunelle, L. Nadolski, A. Loulergue, M. A. Tordeux, A. Nadji Longitudinal dynamics : R. Nagaoka A. Nadji

Conception : A. Mary, D. Zerbib, K. Tavakoli, J. L. Marlats Vacuum group : N. Bechu, M. H. NGuyen, C. Herbeaux Alignement : A. Lestrade ECA/ICA : N. Leclerq, Y.M. Abiven, F. Blashe

> O. Chubar, C. Kitegi (BNL) J. M. Filhol (Fusion to Energy)

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SOLEIL Accelerator complex

Energy	GeV	2.75	A Draw and the second s
RF frequency	MHz	352.197	Synchrotron buildin
Betatron Tunes		18.202 / 10.317	
Natural Chromaticities		-53 / -19/ Operation with 2 and 2.6	Technical buildings
$\begin{array}{c} \text{Momentum Compaction} \\ \alpha_1^{} / \alpha_2^{} \end{array}$		4.55 × 10 ⁻⁴ / 4.30 × 10 ⁻³	100 MeV Linac, Booster synchrotron, 2,75 GeV
Emittance H	nm.rad	3.70 ± 0.2	storage ring
Energy spread		1.0 × 10 ⁻³	
Coupling, ϵ_v/ϵ_H	%	0.11	
Current Multibunch mode	mA	500 (qualified, operation 2011), 400 in operation now)	
Average Pressure	mbar	7 × 10 ⁻¹⁰	
Beam Lifetime	h	18-11 h depending on IDs, top up mode for the users	THE STAR
Single bunch current	mA	20	

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

The ID life ...

User request

(spectral range, polarization, taper, aperiodicity)

Conception

radiation : SRW

ID type : EM/PPM/hybrid, end magnets, in vacuum RADIA; OPERA/TOSCA 3D /ELEKTRA 3D effect on the e. beam :TRACY-II, BETA, RADIA mechanics CATIA/ motorization-power supplies

Construction

Magnetic measurements (B(x, s) \int Bds, \int Bdsds' Gn Gs, multipolar terms, phase error

Corrections (sorting, magnet exchange, adjustement) : IDBuilder Field/helicity variation

Tests with the electron beam

vacuum, orbit, tunes, chromaticities, coupling => $\int Bds$, $\iint Bdsds'$ Gn Gs

Tests with the photon beamline

spectra vs. Gap/I, pol. => B, intensity, phase error

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SULLER General presentation of SOLEIL insertion devices

The tools : Magnetic measurement benches

2 APPLE-II benches 3D Hall probe, flipping coils

M. E. Couprie, ICFA workshop on future Light Source, Thomas Jenerson Nat. Acc. Facility. March. 5-7, 2012, WG ID

SET OF A SET OF A SE

SOLEIL EPU

	HU640	HU256	HU80	HU65	HU64	HU60	HU52	HU44	HU42	HU36
Number	1	3	3	1	1	2	2	2	1	1
Energy (keV)	0.005-	0.01-1	0.08-1.5	0.35-0.9	0.1-4	0.1-4	0.5-6	1-8	1-8	2-10
Ž	0.04									
Туре	Und.	Und	Und	Und	Und	Und	Und	Und	Und	Und
Technology	EM	EM	Apple-II	EMPHU	Apple-II	Apple-II	Apple-II	Apple-II	Apple-II	Apple-II
Polarization	C, LH,	C, LH, LV,	C, LH,	C, LV	C, LH,	C, LH,				
	LV var.	LHA, LVA	LV		LV	LV	LV	LV	LV	LV
Periodicity	Р	А	1Q-2P	Р	Q	Р	Р	Р	Р	Р
K (T)	5.4/6.6	7.9/10.6	5.7/6.4	1.46	3.7/5.2	3.1/4.5	2.6/3.7	1.7/2.6	1.4/2.2	1.8/2.5
$B_{x max}(T)$	0.09	0.33	0.76	0.24	0.62	0.6	0.53	0.41	0.37	0.53
$B_{z max}(T)$	0.11	0.44	0.85	0.24	0.86	0.8	0.76	0.64	0.58	0.74
N Period	14	12	19		25		31			
number										
SS	L	М	Μ	М	Μ	М	М	M	Μ	С
Beamline	DESIRS	CASSIOPÉE	TEMPO	DEIMOS	HERMES	CASSIOPÉ	DEIMOS	TEMPO	HERMES	SIRIUS
		PLÉIADES	PLÉIADES			E	LUCIA	SEXTANT		
		ANTARES	SEXTANT			ANTARES				
Installed	У	У	У	y, Feb.	y May.	У	У	У	У	У
				2012	2011				Jan. 2011	

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

LEILI- General presentation of SOLEIL insertion devices

SOLEIL in vacuum undulators and wigglers

	U24 NdFeB	U20 SmCo	U20 NdFeB	U18cryo	WSV50	W164
Number	1	5	2	1	1	1
Énergy	5-15	3-20	3-25	1-30	10-50	5-80
(keV)						
Туре	Und.	Und.	Und	Und.	In vac. Wiggler	Wiggler
Technology	SV	SV	SV	SV cryo	SV	SV
Polarisation	L	LH	L	L	L	L
Periodicity	Р	Р	Р	Р	Р	Р
K (T)	1.88	1.79	1,96	1.95	9.9	27.6
$B_{x max}(T)$						
$B_{z max}(T)$	0.84	0.96	1.05	1.16	2.1	1.8
Ν		98	98			20
SS	М	5 C, 1 M	1L, 1 S		С	М
Beamline	PX2	PX1	NanoSCOPIUM	R&D	PSYCHÉ	PUMA
		CRISTAL	Galaxies n°2	(NanoSCOPIUM)		
		SWING				
		SIXS				
		GALAXIES				
Installed	у	У	?/ Aug2012	Aug. 2011	у	Aug. 2013

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SULLEIL - General presentation of SOLEIL insertion devices

Brilliance

SRW software

O. Chubar, P. Elleaume, Proc. EPAC-98, 1177.

O. Chubar et. al., Proc. SPIE 4143 (2000) 48; SPIE 4769 (2002) 145.

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Implementation of the IDs

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SUBJECT General presentation of SOLEIL insertion devices

Medium and long straight section

Two different IDs for a wider spectral range / fast switching

Ex of PLEIADES with its two IDs Ex of HU44 and HU80 on TEMPO

Case of Cassiopée, TEMPO, HERMES, DEIMOS ..

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Medium and long straight section

Canted undulators with a magnetic chicane

Example : PXII-A/ PX-IIB

	angle (mrad)	Field integral 2.75 GeV (mTm)	Field integral I GeV (mTm)
dipole I	0.5	4.57	l.67
dipole 2	5,38	49,12	17,93
dipole 3	11,88	108,46	39,6
dipole 4	6	54,78	20

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

jeudi 8 mars 2012

Ex of Nanoscopium/ Nanotomography

2- Chicanes for canted undulators

Permanent magnet chicane

Dipole 0.5, 5.38 and 6 mrad : 69 mm length

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Electromagnetic undulators : HU640

Radia code: http://www.esrf.fr

 $B_{z}(s)=B_{B}.cos[2\pi s/\lambda_{o}]+B_{R}.sin[2\pi s/\lambda_{o}]=B_{zo}.cos[2\pi s/\lambda_{o}+f]$

Fast switching : I Hz : 270 ms for switching -±600 A on PS1, 300 ms flat top for data acquisition

SOLEIL conception- Realisation Danfysik, Magnetic measurements SOLEIL

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

14B

Electromagnetic undulators : HU256

APPLE-II

Total : 12 (3HU80, HU64, 2 HU60, 2 HU52, 2HU44, HU42, HU36)

Example of ID-Builder optimisation

ID Builder, Genetic Algorithm, O.Rudenko and O.Chubar, Proc. of 9th Int. Conf.

on PPSN IX, p.362 (2006)

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Short period APPLE-II HU36

First assembly with AI magnet holders : deformation of the holders because of the magnetic forces during a phase change => Mechanical hysteresis

M. E. Couprie, ICFA Workshop on Future Light Source, Thoma

Change to magnet holders in stainless steel, low permeability, assembly with comparators

Motorization

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

EMPHU

Polarisation switching in 60 ms

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

EMPHU

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

EMPHU

Static measurements

Corrector IP50 : exit position adjustment

Corrector CHE-CHS: field integral adjustment

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

EMPHU

Magnetic and mechanical design

Mechanical design

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Gap •mm••

30

25

20

jeudi 8 mars 2012

0

5

10

15

4- In vacuum undulators

Magnetic measurements

SWING

Phase error (Rms) = 2.5°

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

5-Wigglers

In vacuum wiggler

Choice of an in vacuum wiggler rather than a superconducting wiggler

40 60 80 100 120 140 Wiggler Period [mm]

Thomas Jefferson Nat.Acc. Facility. March. 5-9, 2012, WG ID

5-Wigglers

In vacuum wiggler

Choice of an in vacuum wiggler rather than a superconducting wiggler

20 40 60 80 100 120 140 160 Wiggler Period [mm]

Thomas Jefferson Nat.Acc. Facility. March. 5-9, 2012,WG ID

5-Wigglers

In vacuum wiggler

O. Marcoullé et al, IPAC 2011, 3236

J. Safranek et al, Phys. Rev. Special Topics (2002), Vol. 5, 010701, pp. 1-7

5-Wigglers

Out of vacuum wiggler for the slicing and PUMA beamline

I64 mm period, B= 1.8 T at 15 mm for the slicing project, interaction with the laser at 800 nm for PUMA, wiggler radiation

Magnetic measurements on sample magnets

- Test Bench with NdFeB and PrFeB magnets
- Full scale undulator with PrFeB magnets, operation temperature of 77 K
 - => Variation of the susceptibility vs T

Characteristics	CR53	BH50	CH49	VAC764	N50
Company	F	litach-Neom	VAC	Atlas-Yunshen	
Type of magnet	Pr ₂ Fe ₁₄ B	Nd ₂ Fe ₁₄ B			
Remanence Br (T)	1.35	1.40	1.39	1.37	1.40
Coercivity Hcj (T)	1.65	1.39	1.63	1.63	1.38
Temp. Coef ΔBr (%/ °C)	0.11	0.11	0.11	0.12	0.11
Temp. Coef ΔHcj (%/ °C)	0.58	0.58	0.58	0.70	0.60
Dimensions (mm ³)	4x4x4	4x4x4	4x4x4	4x4x4	4x4x4

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

NdFeB and PrFeB 4 periods Test Benches

Validation of magnetic model at low temperature

 $Nd_2Fe_{14}B$ and $Pr_2Fe_{14}B$ magnets characterisation and modelling for cryogenic permanent magnet undulator applications, C. Benabderrahmane, P. Berteaud, M. Valléau, C. Kitegi, K. Tavakoli, N. Béchu, A. Mary, J. M. Filhol, M. E. Couprie, Nuclear Instruments and Methods in Physics research A 669 (2012) 1-6

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Room temperature assembly

phase error : 3.2 °

PM	Pr ₂ Fe ₁₄ B
Pole	Vanadium P
Period:	18 mm
N° periods:	107
Bz ₀ :	1.15 T à 77 K
K:	1.9
Gap min:	5.5 mm

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Low temperature measurements at 77 K

M. E. Couprie, ICFA Workshop on Future

6- R&D cryogenic undulator

Low temperature measurements at 77 K

3 ID

6- R&D cryogenic undulator

Cooling to 77 K

Cryo Cooler: Power 2000 W (<300 W), Liquid LN2, Pump : 30 to 90 Hz (40 Hz), Flow : I to 30 l/mn (5 l/mn)

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SULFIL7- SOLEIL beam operation in presence of the IDs

SOLEIL lattice

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Dipolar terms : field integrals

Comparison magnetic measurement hall/ electron beam

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Dipolar terms : field integrals

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SULELT - SOLEIL beam operation in presence of the IDs

Analog FFWD for EM IDs

Reduction of the spikes due to unperfect synchronisation between main and correction power supplies, via SPI controller

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SULFIL7- SOLEIL beam operation in presence of the IDs

Increase of the electron orbit length due to some IDs

$$\Delta x(s_i) = -\frac{\eta_x(s_i)}{\alpha} \cdot \frac{K^2 L_u}{4\gamma^2 C}$$

	HU640	HU256	HU80	WSV50	U20
K _{max}	8.87	9.56	7.1	9.8	1.8
L _u [m]	10	3.5	1.6	1.9	1.9
η ond [m]	0.2	0.13	0.13	0.28	0.28
<∆x>[µm] predicted	8.6	2.25	0.57	2.27	0.08

Transverse shift of the orbit up to 10 µm => Change of the RF frequency joined to the FFWD tables

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SULLER SOLEIL beam operation in presence of the IDs

Resulting source point stability FFWD tables with Slow and Fast Orbit Feedback

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Simple Soluting source point stability

Resulting source point stability FFWD tables with Slow and Fast Orbit Feedback

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SULLER - SOLEIL beam operation in presence of the IDs

Skew quadrupole : Coupling

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

ELETT SOLEIL beam operation in presence of the IDs

Quadrupolar terms : tune shifts

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Quadrupolar terms : tune shifts compensation

Global Tune Feedback (2 Quad families)

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Sextupolar terms : chromaticity

Chromaticity in X induced by U20_SWINGNo chromaticity induced in Z plane

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Effect on lifetime

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

6- SOLEIL beam operation in presence of the IDs

Transverse Mode Coupling Instability Threshold

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Conclusion

Conclusion

Beam commissioning of SOLEIL with aldready several ID installed

Active construction of ID at SOLEIL : 25 (4 EM, 12 APPLE-II, 1 EMPHU, 7/8 in vacuum undulators, 1 cryogenic undulator, 1 in vacuum wiggler, 1 wiggler to be built) => Wide variety of systems

Study of the effect on the stored beam and comparison of magnetic measurements, further correction with magic fingers Modification of APPLE-II carriages : 180° phase variation Renewal of CLIO FEL undulator

- R&D : PrFeB cryogenic undulator
 - Robinson wiggler
 - other

SULLEROF SOLEIL beam operation in presence of the IDs

Maintenance of installed IDs

- Encoder change

- Beamline Energy drift due to gap change induced by temperature variation

 $\Delta T=2$ °C, $\Delta gap \sim 25$ microns

FII7- SOLEIL beam operation in presence of the IDs

SOLEIL sizes and divergences at source points

Horizontal emittance 3.7 nm.rad

			H Size	H Divergence	
	BetaX	EtaX	SigmaX	Sigma XP	Effective
	m	m	μ <mark>m</mark>	^μ rad	Emittance H
Short straight	17,8	0,285	388	14,5	5,61 nm.rad
Medium straight	4,0	0,133	182	30,5	5,56 nm.rad
Long straight	10,1	0,200	281	19,2	5,40 nm.rad
Dipole 4°	0,38	0,021	43	107,0	

Vertical emittance 37 pm.rad (1% coupling)

		V Size	V Divergence
	BetaZ	SigmaZ	SigmaZP
	m	μ <mark>m</mark>	^μ rad
Short straight	1,75	8,1	4,6
Medium straight	1,77	8,1	4,6
Long straight	8,01	17,3	2,2
Dipole 4°	16,01	24,5	2,1

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

The tools : Magnetic measurement benches

Example of field integral measured with the pulsed wire technique

Pulse 4.5 A $\Delta t=10 \ \mu s$ Measurement of an 1 T, 18 mm period, 2 m long undulator Signal/Noise : 26.02 dB CuBe wire : 125 µm diameter, 10 N, sag : 65 µm 5 A 2 µs bipolar pulse generator developed in house Photodiode for vibration detection

> Measurement of the wire velocity Wiener filtering

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

4- In vacuum undulators

Magnetic and mechanical design

First in vacuum undulator purchased to Danfysik Per sorting, Assembly in modules Modules measurements Module assembly with iterative sorting ID builder (genetic algorithm) and measurement Shimming, Magic finger

After assembly

Chamber installation

Liner

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

Genetic algorithm based ID Builder

O.Rudenko and O.Chubar, Proc. of 9th Int. Conf. on PPSN IX, p.362 (2006)

Variation Operators for Permutations:

Advantages : object function, arbitrary search space, search from ap population, mutation and cross-over => global optimum, multi-modal/multi-objet

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID

SOLEIL Machine status

500 mA (in 312 or 416 buckets), with two cryomodules, used for beamline radioprotection, 400 mA for user shifts, top-up, few shifts in temporal structure mode or hybrid mode

M. E. Couprie, ICFA Workshop on Future Light Source, Thomas Jefferson Nat. Acc. Facility. March. 5-9, 2012, WG ID