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 Beam stability requirements

 RF beam position monitor technology

 NSLS II developments

 Recent x-ray fluorescence-based photon beam position monitor results
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Beam Stability Requirements

 The scales of interest are the electron beam size and photon beam 
angular divergence for diffraction limited beams.  Typical stability 
requirements set at 5-10% of beam size / divergence.

 Electron beam size for ultimate storage rings approaching 10 m, 
photon angular divergence 1 / ( √N) approaching 5 rad.

R. Hettel, USPAS 2003
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Beam Stability Requirements
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APS Broadband RF BPM data acquisition upgrade

 Eight channels/board, 88 
MS/sec sampling.  Altera 
FPGA processing.

 One second (262144 
samples) turn-by-turn 
beam history for machine 
studies / fault diagnosis.

 Demonstrated noise floor  
< 5 nm / √Hz

 Eighteen sectors 
instrumented, more on the 
way.
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State-of-the-art Commercial Solution

 Noise floor approaching 2 nm / √Hz.

 Long term drift 200 nm p-p / 24 hours*.

 Integrated User FPGA support

* Guenther Rehm, Diamond Light Source, EPAC 2008
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APS BPM Electronics Performance

Libera Brilliance@APS APS BSP-100 Module
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NSLS II Digital Front End
Cell Controller

NSLS-II RF BPM / Feedback Development

BPM Laboratory Test Setup

AFE

PTC

RF Shield
Courtesy of Om Singh



BROOKHAVEN SCIENCE 
ASSOCIATES

NSLS-II RF BPM Features

• Long-Term Stability (200nm) based on thermal rack stability of +/- 0.1C

• Active Pilot-Tone (calibration and system test)

• Sub-sampling coherent signal processing – Phase Locked to Frev

• Frequency domain position calculation via single Bin DFT

• Generic design – Parametric configuration for Single-Pass, Booster, SR

• Latest Xilinx Virtex-6 FPGA technology

• Up to 8M samples (ADC data, TbT, FOFB)

• Simultaneous EPICS and Matlab communication
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NSLSII BPM Stability Test Data without Pilot-Tone

(8) BPMs measured simultaneously in Thermal Test Rack , CW (8hrs), 1/17/12

Standard Deviation (um) – Horizontal Plane
BPM (1-8):   0.4012    0.1991    0.1362    0.1343    
0.1511    0.1300    0.1437    0.1267

Temperature 
stability 
measured with 
AFE sensor

Standard Deviation (um) – Vertical Plane
BPM (1-8):  0.3488    0.2082    0.1435
0.1342    0.1230    0.1248    0.1685  0.113

Thermal rack 

(+-0.1C) Storage Ring

Courtesy of Om Singh
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ALS Pilot-Tone Experimentation
500mA, Top-off, Dual-cam User Beam

Muti-Bunch, 
PT frequency RF + frev/64
Study correlation of PT and signal as 
a function of frequency offset
The fan above the BPM was turned off 
twice for about 10 minutes
Pilot Tone set to: RF + frev / 64

Courtesy of Greg Portmann, ALS

Thermal Perturbation to BPM

Raw and Corrected Position

Turn off fan 
above BPM (BPM 
thermal sensors)

Corrected Signal
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NSLSII BPM Measurements at ALS

Single Bunch (ALS)
A single 25mA bunch was injected 
at the ALS SR in decay mode.. The 
ALS revolution period is 656ns or 
1.52MHz corresponding to            
77-samples per turn. 

User Operation (ALS)    
500mA Double Cam Fill
Button A was split to BPM 
channels A, B, C, D

RF  =  499.641546 MHz

Rev =  656.470 ns

Measured Single-Bunch 

Resolution vs. Bunch 
Charge

Data Courtesy of Om Singh

11 nm /√Hz

2.5 nm /√Hz
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APS Hard X-ray Beam Position Monitor Development

● Extensive studies have taken 
place at the APS investigating 
copper x-ray fluorescence vs. 
photoemission for photon beam 
position monitoring.

●     Soft bending magnet 
radiation background 
essentially eliminated.

● High-power, high power-density 
performance has been 
demonstrated.

●      10 kW from two in-line APS 
undulator A magnets

IR camera image of copper GRID-XBPM
intercepting approx. 5 kW of x-rays from
two in-line undulator A sources with
102 mA of stored beam.
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X-ray BPM Performance Requirements
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Grazing-incidence Hard X-ray Fluorescence-Based 
Insertion Device X-ray Beam Position Monitor

Conceptual Design (GRID-XBPM)

Concept courtesy of Bingxin Yang

Plan View

Two Pin diode pairs -
above / below midplane
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GRID-XBPM First Production Article
Tests at 29-ID-A
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Bend magnet radiation background

• Correctors have soft magnetic edges, 
generating mostly soft x-rays. 

• Strong TEY near undulator axis
• A Cu-K XRF detector is insensitive to 

low-energy x-ray photons (< 9 keV).

 Measured Corrector Field

z (m)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

B
y

 (G
)

0

200

400

600

800

1000

1200

1400

1600

S
te

e
rin

g
 A

n
g

le (m
ra

d
)

0.0

0.2

0.4

0.6

0.8

1.0

C
ritic

a
l E

n
e

rg
y (k

e
V

)

0

1

2

3

4

5

Comparison of 2-D intensity distribution 
of BM radiation from corrector magnets: XRF map @ 20 m has a clean center

(A) Power                    (B) Total Electron Yield (Au)            (C) Cu-K fluorescence
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Background Reduced a Factor of 1000 Compared to 
Photoemission-Based X-Photon BPM

~10 nA

~10 microAmps

2.4 milliradians

7-ID

9-ID

23-ID
Canted

32-ID

29-ID
GRID
xbpm

Gaps Open
To 180 mm
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Linear XBPM Vertical Response for
 Greater than 3 Decades of Signal Intensity

(at 27 meters from source)
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Horizontal Response (Uncalibrated)

(at 2.5 meters from source)
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Storage Ring Orbit Stability Summary

 Instrumentation supporting electron beam stability is well in hand.

 High-power photon bpm technology has arrived.
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Backup Slides
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Insertion Device Field Integrals



Glenn Decker FLS2012

Insertion Device Field Integrals
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Insertion Device Field Integrals
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Insertion Device Field Integrals
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Insertion Device Field Integrals
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Insertion Device Field Integrals
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Insertion Device Field Integrals


