

Orbit Stability Challenges for Storage Rings

Glenn Decker Advanced Photon Source Beam Diagnostics March 8, 2012

Outline

- Beam stability requirements
- RF beam position monitor technology
- NSLS II developments
- Recent x-ray fluorescence-based photon beam position monitor results

Beam Stability Requirements

- The scales of interest are the electron beam size and photon beam angular divergence for diffraction limited beams. Typical stability requirements set at 5-10% of beam size / divergence.
- Electron beam size for ultimate storage rings approaching 10 μ m, photon angular divergence 1 / ($\gamma \sqrt{N}$) approaching 5 μ rad.

experiment parameters	beam orbit	beam size	beam energy/ energy spread
< 0.1% intensity steering to small samples	∆x,y < 5% σ _{x,y} ∆x′,y′ < 5% σ′ _{x,y}	$\Delta \sigma_{x,y} < 0.1\% \ \sigma_{x,y}$ $\Delta \sigma'_{x,y} < 0.1\% \ \sigma'_{x,y}$	$\Delta E/E(coher) < 10^{-4}$ $\Delta E/E(rms) < 10^{-4}$
< 10 ⁻⁴ photon energy resolution	∆x′ < ~5 μrad ∆y′ < ~1 μrad _(undulator)		$\Delta E/E(\text{coher}) < 5 \text{ x } 10^{-5}$ $\Delta E/E(\text{rms}) < 10^{-4}$ $(\text{und n} = 7)$
timing, bunch length		∆σ _t < 0.1% σ _t	$\Delta E/E(coher) < 10^{-4}$

R. Hettel, USPAS 2003

Beam Stability Requirements

APS	Upgrade	Beam	Stability	Goals.
	10			

	AC rms Motion 0.01-200 Hz		AC rms Motion 0.01-1000 Hz		Long-term drift (One Week)	
	$\mu { m m}~{ m rms}$	$\mu {\rm rad}~{\rm rms}$	$\mu { m m} ~{ m rms}$	$\mu \mathrm{rad} \ \mathrm{rms}$	$\mu { m m}~{ m rms}$	$\mu rad rms$
Horizontal	3.0	0.57	6.0	1.14	5.0	1.0
Vertical	0.42	0.22	0.82	0.44	1.0	0.5

APS Broadband RF BPM data acquisition upgrade

- Eight channels/board, 88
 MS/sec sampling. Altera FPGA processing.
- One second (262144 samples) turn-by-turn beam history for machine studies / fault diagnosis.
- Demonstrated noise floor
 < 5 nm / √Hz
- Eighteen sectors instrumented, more on the way.

State-of-the-art Commercial Solution

- Noise floor approaching 2 nm / \sqrt{Hz} .
- Long term drift 200 nm p-p / 24 hours*.
- Integrated User FPGA support

* Guenther Rehm, Diamond Light Source, EPAC 2008

APS BPM Electronics Performance

Libera Brilliance@APS

APS BSP-100 Module

NSLS-II RF BPM / Feedback Development

BPM Laboratory Test Setup

AFE

NSLS II Digital Front End Cell Controller

RF Shield

Courtesy of Om Singh

NSLS-II RF BPM Features

- Long-Term Stability (200nm) based on thermal rack stability of +/- 0.1C
- Active Pilot-Tone (calibration and system test)
- Sub-sampling coherent signal processing Phase Locked to Frev
- Frequency domain position calculation via single Bin DFT
- Generic design Parametric configuration for Single-Pass, Booster, SR
- Latest Xilinx Virtex-6 FPGA technology
- Up to 8M samples (ADC data, TbT, FOFB)
- Simultaneous EPICS and Matlab communication

(8) BPMs measured simultaneously in Thermal Test Rack , CW (8hrs), 1/17/12

Courtesy of Om Singh

Thermal rack (+-0.1C) Storage Ring

Temperature stability measured with AFE sensor

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE

ALS Pilot-Tone Experimentation 500mA, Top-off, Dual-cam User Beam

Thermal Perturbation to BPM

Muti-Bunch, PT frequency RF + f_{-rev}/64

Study correlation of PT and signal as a function of frequency offset The fan above the BPM was turned off twice for about 10 minutes Pilot Tone set to: RF + f_{-rev} / 64

Raw and Corrected Position

Courtesy of Greg Portmann, ALS

NSLSII BPM Measurements at ALS

Single Bunch (ALS)

A single 25mA bunch was injected at the ALS SR in decay mode.. The ALS revolution period is 656ns or 1.52MHz corresponding to 77-samples per turn.

User Operation (ALS) 500mA Double Cam Fill

Button A was split to BPM channels A, B, C, D

RF = 499.641546 MHz

APS Hard X-ray Beam Position Monitor Development

- Extensive studies have taken place at the APS investigating copper x-ray fluorescence vs. photoemission for photon beam position monitoring.
 - Soft bending magnet radiation background essentially eliminated.
- High-power, high power-density performance has been demonstrated.
 - 10 kW from two in-line APS undulator A magnets

IR camera image of copper GRID-XBPM intercepting approx. 5 kW of x-rays from two in-line undulator A sources with 102 mA of stored beam.

X-ray BPM Performance Requirements

APS upgrade beam stability goals (19 m from the source)

Plane	AC Motion (0.1-200 Hz)	Long Term (1-week)
Horizontal (RMS)	10.5 µm	19.6 µm
Vertical (RMS)	4.2 μm	9.6 µm

APS upgrade XBPM-1 performance specifications (19 m from the source)

Plane	AC Motion (0.1-200 Hz)	Long Term (1-week)
Horizontal (RMS)	7.5 μm	14 µm
Vertical (RMS)	3.0 µm	6.8 µm

Grazing-incidence Hard X-ray Fluorescence-Based Insertion Device X-ray Beam Position Monitor Conceptual Design (GRID-XBPM)

GRID-XBPM First Production Article Tests at 29-ID-A

Bend magnet radiation background

- Correctors have soft magnetic edges, generating mostly soft x-rays.
- Strong TEY near undulator axis
- A Cu-K XRF detector is insensitive to low-energy x-ray photons (< 9 keV).

Comparison of 2-D intensity distribution

of BM radiation from corrector magnets: XRF map @ 20 m has a clean center

(A) Power

(B) Total Electron Yield (Au)

(C) Cu-K fluorescence

Background Reduced a Factor of 1000 Compared to Photoemission-Based X-Photon BPM

TO/B skindel

Date in the second

فسرابت الأكاك

COVACIENTIA CONTRACTOR

ICOLUMN I

7-ID

9-ID

29-ID

GRID

180 mm Ga

Gaps Open To 180 mm

~10 nA

Linear XBPM Vertical Response for Greater than 3 Decades of Signal Intensity

Horizontal Response (Uncalibrated)

Storage Ring Orbit Stability Summary

- Instrumentation supporting electron beam stability is well in hand.
- High-power photon bpm technology has arrived.

Backup Slides

