Emittance Optimization at PITZ for FLASH and for the European XFEL

Mikhail Krasilnikov (DESY) for the PITZ Team

ICFA Workshop on Future Light Sources, March 5-9, 2012 Thomas Jefferson National Accelerator Facility, Newport News, VA

Content:

- Photo Injector Test facility at DESY in Zeuthen (PITZ)
 - motivation, specs and PITZ-1.8 setup
 - main components (gun, booster, cathode laser)
- Emittance experimental optimization at PITZ
 - 13.01.2012 → 10 years of photo electrons at PITZ
 - measurement procedure
 - emittance 2009-2011 improvements
 - emittance for bunch charge from 20pC to 2nC
- Summary and outlook

Photo Injector Test facility at DESY in Zeuthen

The Photo Injector Test facility at DESY in Zeuthen (PITZ) focuses on the development, test and optimization of high brightness electron sources for superconducting linac driven FELs:

- \Rightarrow test-bed for FEL injectors: FLASH, the European XFEL
- \Rightarrow small transverse emittance (<1 mm mrad @ 1 nC)
- \Rightarrow stable production of short bunches with small energy spread
- \Rightarrow further studies: dark current, QE, thermal emittance, ...

+ detailed comparison with simulations = benchmarking for the PI physics extensive R&D on photo injectors in parallel to FLASH operation test and optimize rf guns for subsequent operation at the FLASH and XFEL test new developments (laser, cathodes, beam diagnostics)

PITZ-1.8 setup

XFEL Photo Injector Key Parameters to be tested at PITZ

subsystem	parameter	value	remarks
RF gu	frequency	1.3 GHz	
	E-field at cathode	60 MV/m	dark current issue
n cav	RF pulse duration	700 us	max
vity	Repetition rate	10 Hz	max
Cathode laser	Temporal> flat top> FWHM	20 ps	
	Temporal> flat top> rise/fal time	2 ps	challenge 20ps
	Transverse – rad.homogen.XYrms	0.3-0.4 mm	fine tuning -> thermal emittance
	Pulse train length	600 us	max
	Bunch spacing	222 ns (4.5MHz)	1us (1MHz) at PITZ now
	Repetition rate	10 Hz	max
Electron beam	Bunch charge	1 nC	other charges under consideration
	Projected emittance at injector	0.9 mm mrad	
	Bunch peak current	5 kA	after bunch compression (not at PITZ)
	Emittance (slice) at undulator	1.4 mm mrad	

Main efforts at PITZ towards XFEL photoinjector

PITZ RF-Gun

RF Gun Feed System

Improvement of the RF gun phase stability

Booster upgrade at PITZ: TESLA→CDS

Old TESLA-booster was in 2010 replaced with a specially designed for PITZ CDS-booster

restricted peak gradient (final beam momentun ~13MeV/c)
short RF pulses only (50-100us)

CDS = Cut-Disc-Structure •improved water cooling system

higher peak gradients (final beam momentum ~25MeV/c
long RF pulses (up to 700us)
longer acceleration (L~1.4m)
precise phase and amplitude control (RF probes)
Symmetrical couplers

Booster schematic cavity layout.

- 1 regular cells,
- 2 rf coupler, 3 rf flanges,
- 5, 5a photo multipliers,
- 6, 6a- vacuum gauges,
- 7 pumping ports,
- 8 ion pumps,
- 9 internal cooling circuit,
- 10 outer cooling circuit,
- 11 support and adjustment.

Photo cathode laser (Max-Born-Institute, Berlin)

Photo cathode laser: temporal pulse shaping

MBI

Multicrystal birefringent pulse shaper containing 13 crystals

Gaussian:

DESY

Trains with up to 600 (2700) laser pulses → electron bunches of 1nC each

PITZ evolution 2000-2011

Slit scan technique at PITZ: how it works now

Emittance Improvement 2009 -> 2011

Q nC	ε <mark>(2011)</mark> mm mrad	<mark>δε(</mark> 2011→2009) %
1.0	0.70	-20%
0.25	0.33	-30%
0.1	0.21	-35%

Improvements:

- Gun phase stability (10MW coupler+FB)
- Laser stability + beam transport
- Magnetizable components removing

Better emittance improvement for lower bunch charges \rightarrow due to the long pulse train operation (\rightarrow "3000-creteria" = f[gain,NoP])

Emittance vs. Laser Spot size for various charges

Г

Minimum emittance measured in 2011 at PITZ

	Charge, nC		100% rms xy-emittance,mm mrad			
2			1.25±0.080			
		1	0.70±0.026			
	0.25 0.1		0.33±0.003			
			0.21±0.001			
	0.02		0.12±0.0005			
mm mrad	$ \begin{array}{c} 1.4 \\ 1.2 \\ 1.2 \\ 1.0 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.6 $		Temporal Profiles IM=(21.20 0.33)ps IM=(21.20 0.33)ps im=(2.02 0.11)ps im=(2.02 0.13)ps 6 4 - 2 0 2 4 6 8 10 12 14			
	0.2					
	0.0 C).0 0	.5 1.0 1.5 2.0 bunch charge. nC			

Measurements vs. simulations: rather good agreement in emittance values, but optimum machine parameters...

Measured Phase Space for various bunch charges

Qbunch	Beam at E	MSY1	Horizontal pha	ase space	Vertical phase	space	Փ _{ցսո}	
Las.XYrms	XY-Image	σ_x/σ_y		ε _x		ε _y		
2 nC	1 1	0.323mm 0.347mm	$\begin{array}{c} \hline & \hline $	1.209 mm mrad	22 24 24 24 24 24 24 24 24 24 24 24 24 2	1.296 mm	+6deg	
0.38 mm			S 2 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			mau		
1 nC	Mana x 3500 P085 y 3550 P085 y 3299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.399mm 0.328mm	Sill and X: 6 public S and C super State S and C super State S and C super State S and C super S and	0.766 mm mrad	Lube 395.6 [A], Q = 1.093 ± 0.009, [nC] Sit Lube 395.6 [A], Q = 1.093 ± 0.009, [nC] 24 50 50 50 50 50 50 50 50 50 50	0.653 mm mrad	+6deg	
0.30 mm	4.5 4.5 2.5 3.5 5.5 4.5 5.5 5.5 5.5 6.5 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7		20 x, tent		20 20 20 20 20 20 20 20 20 20 20 20 20 2			
0.25 nC		0.201mm 0.129mm	Site are X: 6 pulses: S and Y S as = 1.2005 [nC] Site are X: 6 pulses: S and Y S as = 1.200 14	0.350 mm mrad	$\begin{array}{c} L_{bus} = 392.6, [A], \ Q = 0.274 \pm 0.006, [nC_1] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.291 mm mrad	0deg	
0.101111	1.5.5 4.5.5 5.5.6 0 10071 Jane (Horr your Hills 0 6.8 1-0.2021; you dires 1 FMS71 Jane (Horr your Bills 0 6.8 1-0.2021; you dires 1	0.407	x, Imm] 0		20 τ (mm] 2 τ 2 τ 2 π 0 τ (mm] 2 τ 2 τ 2 π 0 τ (mm] 2 τ 2 τ 2 π 0 τ 2 π 0 τ (mm] 2 τ 2 τ 2 π 0 τ 0 τ 0 τ 0 τ 0 τ 0	0.457		
0.1 nC	иная у 2070 45 нася у 2000 1005 у 2000 33 33 4 5 5 5 5 5 5 5 5 5 5 5 5 5	0.197mm 0.090mm	$\sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j$	0.282 mm mrad	200 200 200 200 200 200 200 200 200 200	0.157 mm mrad	0deg	
0.12 mm	33 33 33 33 35 4 5 5 5 5 5 5 5 5 5 5 5 5		12 10 10 10 10 10 10 10 10 10 10 10 10 10		22 - - 2 3			ned
0.02 nC	Limit Limit Limit Limit Main 2 5.053 0.053 Composition 0.053 0.053 0.053 State 0.053 0.053 0.053	0.066mm 0.083mm	Stiff and X = X = 21 pulses; S = Max / S = 0.000 [InCl]	0.111 mm mrad	uum=387.6, [A], Q = 0.000 ± 0.000, [n[2]] 26 Silitum= Y; 22 pulses; Sumon / SAI = (2000) 27 Silitum= Y; 22 pulses; Sumon / SAI = (2000) 28 Silitum= Sil	0.129 mm mrad	0deg	zoor
0.08 mm	45 4 3 2 2 5 3 3 2 5 3 3 5 4 4 4 5 0 0 1 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1		2003 122- 103 104- 105-011-015-012-012-012-012-012-012-012-012-012-012		200 100 100 0			

Core Emittance for various bunch charges

Charge, nC	PITZ, 100%, mm mrad	LCLS, 95% mm mrad
2	1.25	
1	0.70	1.10
0.7		0.80
0.25	0.33	0.35
0.1	0.21	
0.02	0.12	0.19

DESY

P. Emma, "Beam Brightness Measurements in the LCLS Injector"
J. Frisch, "Operation and Upgrades of the LCLS", LINAC2010

LCLS data:

Emittance Optimization at PITZ-1.8: Summary

> PITZ has set a new benchmark for high brightness electron sources:

- specs for the European XFEL have been demonstrated and surpassed (emittance <0.9 mm mrad at 1nC)</p>
- beam emittance has also been optimized for a wide range of bunch charge (20pC...2nC)

> Emittance measurement procedure

- nominal method → single slit scan for detailed phase space reconstruction
- as conservative as possible → 100% rms emittance
- continuous improvement of the procedure

Emittance measurements at PITZ:

- 2009-2011 upgrade (gun phase stability) resulted in ~ 30% emittance value reduction
- Optimized measured emittance (100% rms ε_{xy}):
 ε(20pC)=0.12mm mrad; ε(100pC)=0.21mm mrad; ε(250pC)=0.182mm mrad; ε(1nC)=0.70mm mrad; ε(2nC)=1.25 mm mrad
- For chosen measurement conditions: emittance ~ linearly on the bunch charge
- PITZ serves also as a benchmark for theoretical understanding of the photo injector physics (beam dynamics simulations vs. measurements)
 - Rather good agreement on emittance values between measurements and simulations
 - Optimum machine parameters: simulations ≠ experiment (talk on Thursday)
- > Outlook:
 - New klystron for the gun
 - New diagnostics for slice emittance and slice energy spread
 - XFEL gun conditioning and characterization

Outlook: PITZ upgrade ongoing this year

