

Prospects for a Laser-Plasma Accelerator based FEL

Carl B. Schroeder

in collaboration with C. Benedetti, M. Chen, E. Esarey, C. Geddes, A. Gonsalves, K. Nakamura, B. Shaw, T. Sokolik, J. van Tilborg, Cs. Toth, W. Leemans

ICFA Workshop on Future Light Sources March 5-9, 2012, Jefferson Lab

Supported by the U.S. DOE under Contract No. DE-AC02-05CH11231

Outline

- Present status of Laser-Plasma Accelerators (LPAs)
- Measurements of LPA beam properties
 - transverse emittance (~0.1 mm mrad)
 - beam duration (~ 5 fs)
 - correlated energy spread measurements
- Path to improved LPA beam quality (higher brightness)
 - improved quality and stability requires controlled injection
- Prospects for an FEL using LPA electron beams
- Path to higher electron beam energy
 - compact 10 GeV LPA

Laser-plasma accelerators (LPAs)

Tajima & Dawson, Phys. Rev. Lett. (1979); Esarey, Schroeder, Leemans, Rev. Mod. Phys. (2009)

Laser-plasma accelerators: >10 GV/m accelerating gradient

$$E \sim \left(\frac{mc\omega_p}{e}\right) \approx (96 \text{ V/m}) \sqrt{n_0 [\text{cm}^{-3}]}$$

plasma wave (wakefield) $E \sim 100 \text{ GV/m}$ (for $n \sim 10^{18} \text{ cm}^{-3}$)

>10³ larger than conventional RF accelerators \Rightarrow ">km to <m"

Accelerating bucket ~ plasma wavelength → ultrashort (fs) bunches ($<\lambda_p/4$)

- beam charge (set by beam loading): ~10-100 pC
- beam duration (set by trapping physics and density): <10 fs

→ high peak current ~10 kA 4

 $\hbar \omega_c [\text{keV}] \approx 1.1 \times 10^{-5} \gamma^2 n [10^{18} \text{cm}^{-3}] r_\beta [\mu m]$

X-ray spectra non-invasive, in situ, single-shot measurement of beam size 6

Faraday rotation used to measure bunch length: ~5 fs

A. Buck et al. "Real-time observation of laser-driven electron acceleration." Nature Physics, 7:543, (2011).

Max-Plank-Institut für Quantenoptik

e-beam: 20 MeV, few pC

Ultra-short (few cycle) laser used to measure e-beam magnetic field using time-resolved polarimetry.

Faraday rotation: R- and L-wave along direction of B in plasma have different phase velocities (polarization rotation)

e-beam generates azimuthal B-field and rays of probe beam pass above and below beam are rotated in opposite directions

single-shot, in situ, non-destructive measurement of electron bunch duration: τ = 5.8 fs FWHM

CTR spectrum used to determine bunch length: ~few fs

Lundh et al., "Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator" Nature Physics, 7:219 (2011).

"Bubble regime": uncontrolled trapping

laser propagation direction **INF&RNO** simulation 20 k_pχ plasma density -15 k_p(z-ct)

- Ultra-high intensity laser (a>2): $\sqrt{a} > k_p r_L/2$
- Drives large amplitude density perturbation and formation of comoving electron-free cavity
- Low plasma wave phase velocity (and large wave amplitude) allow selftrapping of plasma electrons

$$\gamma_p \propto 1/\sqrt{n}$$

continuous (uncontrolled) injection result in large (1-10%) energy spreads
energy gain proportional to injection time *chirped* energy distribution

Trapping physics results in large energy spread, chirped energy distribution

continuous (uncontrolled) injection result in large energy spreads

energy gain proportional to injection time
 chirped energy distribution

longitudinal phase space

controlled (triggered) trapping ⇒
 improve stability and energy spread

CTR of laser-plasma generated microbunching indicates small slice energy spread

rrrr

Plasma density tailoring for triggered injection via phase velocity control

Couple (short, high plasma density) injector to (long, low density) plasma channel:

Integrated injector and accelerator demonstrates improved stability

- Electron trapping and energy gain was controlled by varying the
 - (1) gas jet density
 - (2) laser focal position

Gas jet triggered injections provides for enhanced stability & tuning

Shot-to-shot e-beam stability:

RMS variation (at 300 MeV):

- 1.9% energy centroid
- 0.57 mrad divergence
- 6% charge

BERKELEY

Laser energy fluctuation: 3%

Controlled injection using colliding laser pulses improves beam quality

rrrr

IIIÌ

LPA beam parameters achievable today

- Energy: ~ 100 MeV 1 GeV
 - Obtained with 10-100 TW laser pulses in mm cm long plasmas
- Charge: ~ 1- 100 pC
 - Depends on tuning, energy spread due to beam loading
- Energy spread: ~ 1 10% level
 - Depends on amount of charge, trapping physics
- Normalized Emittance: ~ 0.1 micron
 - Based on divergence measurements (~ 1 mrad) and e-beam spot (~0.1 micron)
 - Improved measurements needed
- Bunch duration: ~ 1 10 fs
 - Based on optical probe, CTR, and THz measurements
- Rep. rate (laser system): 1 10 Hz
 - limited by availability of high average power lasers
- Foot-print (laser system): ~ (few meter) x (few meter)

Driver for GeV Laser Plasma Accelerator:

commercial 30 W-average (10 Hz), 100 TW-peak laser system

LPA 6D beam brightness comparable to conventional sources

$$B_{6D} = \frac{N}{\epsilon_{nx}\epsilon_{ny}\epsilon_{nz}} \approx \frac{(I/I_A)}{r_e\epsilon_n^2\sigma_\gamma} = b_6\lambda_c^{-3}$$

LPA

 $\epsilon_{N} = 0.1$ micron 0.5 GeV 4% energy spread I = 3 kA (~5 fs)

 $b_6 \sim 9 \times 10^{-12}$

LCLS

 $\varepsilon_N = 0.4$ micron 13.6 GeV 0.01% energy spread I = 3 kA

- Energy spread order of magnitude too large (for soft-x-ray FEL; $\rho \sim \text{few x10}^{-3}$)
- Bunch duration < slippage length (for soft x-ray FEL)
- Emittance exchange?

Experimental measurement of undulator radiation at MPQ

rrrr

World-wide interest in light sources driven by laser-plasma accelerator

10 GeV laser-plasma accelerator requires ~10 J laser

Plasma density scalings:

10 GeV LPA using BELLA Laser

WARP simulation (J.-L. Vay, LBNL)

BELLA (BErkeley Lab Laser Accelerator) laser parameters:
 40 J, 1 PW peak power (at max. compression)
 Laser commissioning scheduled completion summer 2012 24

Potential Impact of LPA for future compact light source development

 Compact accelerator: multi-GeV beam from compact LPA: ~10-100 GV/m acceleration gradients

- Plasma accelerator: 1-10 GeV in < 1 m
- Entire accelerator (laser) facility <100 m², "university scale"
- Ultra-short (moderate charge) bunch generation:
 - 1-10 fs, 1-100 pC, high peak current (1-10 kA)
- Intrinsically synchronized particles and light
 - seeding (from laser harmonics)
 - pump-probe experiments
- *Hyper-spectral* (ultrashort x-rays, gamma rays, THz, protons, etc.)
- *Flexible*: single laser system drive multiple LPAs, multiple beamlines
- *High peak brightness source*: average brightness presently limited by average laser power
 - long-term prospects (over next decade): advances in laser tech. (high average power, efficiency) will enable high average power applications